Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 921: 148523, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703863

RESUMO

The Pacific white shrimp Litopenaeus vannamei is a representative species of decapod crustacean and an economically important marine aquaculture species worldwide. However, research on the genes involved in muscle growth and development in shrimp is still lacking. MyoD is recognized as a crucial regulator of myogenesis and plays an essential role in muscle growth and differentiation in various animals. Nonetheless, little information is available concerning the function of this gene among crustaceans. In this study, we identified a sequence of the MyoD gene (LvMyoD) with a conserved bHLH domain in the L. vannamei genome. Phylogenetic analysis revealed that both the overall protein sequence and specific functional sites of LvMyoD are highly conserved with those of other crustacean species and that they are evolutionarily closely related to vertebrate MyoD and Myf5. LvMyoD expression is initially high during early muscle development in shrimp and gradually decreases after 40 days post-larval development. In adults, the muscle-specific expression of LvMyoD was confirmed through RT-qPCR analysis. Knockdown of LvMyoD inhibited the growth of the shrimp in body length and weight. Histological observation and transcriptome sequencing of muscle samples after RNA interference (RNAi) revealed nuclear agglutination and looseness in muscle fibers. Additionally, we observed significant effects on the expression of genes involved in heat shock proteins, myosins, actins, protein synthesis, and glucose metabolism. These findings suggest that LvMyoD plays a critical role in regulating muscle protein synthesis and muscle cell differentiation. Overall, this study highlights the involvement of LvMyoD in myogenesis and muscle growth, suggesting that it is a potentially important regulatory target for shrimp breeding efforts.

2.
Fish Shellfish Immunol ; 144: 109275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081443

RESUMO

MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.


Assuntos
Doenças dos Peixes , Linguados , MicroRNAs , Vibrioses , Vibrio , Animais , Processamento Alternativo , Vibrio/fisiologia , Transcriptoma , Fígado/metabolismo , Peixes/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica/veterinária
3.
Fish Shellfish Immunol ; 141: 109043, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673387

RESUMO

Frequently occurred bacterial diseases have seriously affected the aquaculture industry of half-smooth tongue sole (Cynoglossus semilaevis). Notably, vibriosis, with Vibrio anguillarum as one of the causative pathogens, is the most severe bacterial disease with severe inflammatory response of the host, leading to high mortality rates. In the present study, we explored the relationship between bacterial concentrations and host mortality, inflammatory reaction, and immune response in half-smooth tongue sole after infection with V. anguillarum at different concentrations (Treatment 1, 6.4 × 105 CFU/mL; Treatment 2, 6.4 × 106 CFU/mL). The mortality of Treatment 2 (77.5%) was significantly higher than that of Treatment 1 (10%), corresponding with bacterial concentrations. Although the number of deaths varies, intensive deaths were observed within 24 h post infection (hpi) in both bacterial concentration groups. Histopathological analyses revealed that fish tissues were most severely damaged at 24 or 48 hpi, and Treatment 2 was more severe than Treatment 1. A qRT-PCR-based detection method with virulence factor gene empA was established to quantify the bacterial loads in various tissues, and the bacterial loads were the highest at 24 hpi in Treatment 2, and at 48 hpi in Treatment 1. Additionally, the expression levels of complement genes (C5a, C3, C5, and C6), inflammatory factors (IL-1ß, TNF-α, and IL-10), and other immune-related genes (jak2, NF-κB1, stat3, and tlr3) were increased in various tissues after infection in both treatment groups, with most genes being most expressed at 24 or 48 hpi, and expression levels of inflammatory factors in Treatment 2 were higher than those in Treatment 1. Moreover, the expression of C5a was positively correlated with that of proinflammatory cytokines in both bacterial concentration groups. According to the results of this study, 24-48 hpi was a key node for early vibriosis detection and intervention. Compared with the low mortality of Treatment 1, the mass death of fish in Treatment 2 was suggested to be caused by uncontrolled excessive inflammatory reaction induced by the overactivation of complement system, especially C5a. We believe these results could provide theoretical basis for prevention, evaluation, and treatment of vibrio disease in tongue sole aquaculture, and lay a solid foundation for future functional analyses.

4.
Int J Biol Macromol ; 252: 126445, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611685

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs involved in various biological processes, including immunity. Previously, we investigated the miRNAs of half-smooth tongue sole (Cynoglossus semilaevis) and found that miR-722 (designated Cse-miR-722) was significantly differentially expressed after infection with Vibrio anguillarum, reflecting its importance in immune response. Our preliminary bioinformatic analysis suggested that Cse-miR-722 could target C5aR1 (designated CsC5aR1), which was known to play crucial roles in complement activation and inflammatory response, as a receptor of C5a. However, the underlying mechanisms of their interactions and specific functions in inflammatory and immune response are still enigmas. In this study, we successfully cloned the precursor sequence of Cse-miR-722 (94 bp) and the full length of CsC5aR1 (1541 bp, protein molecular weight 39 kDa). The target gene of Cse-miR-722 was verified as CsC5aR1 by a dual luciferase reporter assay, and Cse-miR-722 was confirmed to regulate CsC5aR1 at the protein level using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The expression of CsC5aR1 and Cse-miR-722 in liver cells and four immune tissues of half-smooth tongue sole changed significantly after LPS stimulation and infection with V. anguillarum. To explore the functional role of Cse-miR-722 in half-smooth tongue sole, we performed both in vitro and in vivo experiments. Cse-miR-722 was observed to affect phagocytosis and respiratory burst activity of macrophages by regulating CsC5aR1 in half-smooth tongue sole. Furthermore, we found that Cse-miR-722 regulated the expression of CsC5aR1, CsC5a, and the inflammatory factors CsIL1-ß, CsIL6, CsIL8, and CsTNF-α both in vitro and in vivo. In addition, Cse-miR-722 reduced mortality and pathological damage. This study clarified the regulatory mechanism of Cse-miR-722 on CsC5aR1 and provided insight into the regulatory roles of Cse-miR-722 in immune responses, laying a theoretical foundation for the feasibility of using miR-722 to prevent and control bacterial diseases in teleost.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Linguados , MicroRNAs , Vibrioses , Vibrio , Animais , Linguados/genética , Inflamação , MicroRNAs/genética , Proteínas de Peixes/metabolismo
5.
Mar Pollut Bull ; 194(Pt A): 115410, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595335

RESUMO

For 17 consecutive years, the outbreak of Ulva prolifera in the South Yellow Sea area of China has caused significant negative impacts on coastal ecological environment. However, its specific influence on fish immunity is rare. In this study, the juvenile Paralichthys olivaceus was exposed to fresh U. prolifera algae (FU) and decomposing algal effluent (DU). After short-term stress for 14 days, the histopathological and transcriptome analysis were performed to study the effect of U. prolifera decay on P. olivaceus. Histopathological analysis found that the liver, spleen and head kidneys of P. olivaceus were damaged after the short-term stress. The transcriptome results showed that the steroid biosynthesis signaling pathway and the PI3K-Akt signaling pathway were significantly enriched. Some immune related genes, including c1qc-like, dusp1, dusp16, HSP90 and metabolic related genes serotransferrin, were differentially expressed. These results highlighted the harmfulness of U. prolifera on marine fish, setting a solid foundation for further analyses.


Assuntos
Linguado , Ulva , Animais , Transcriptoma , Fosfatidilinositol 3-Quinases , Perfilação da Expressão Gênica , China
6.
Artigo em Inglês | MEDLINE | ID: mdl-37327728

RESUMO

Integrins (ITGs) are transmembrane heterodimer receptors with ITGα subunit and ITGß subunit, participating in various physiological processes, including immunity. At present, systematic research on ITGs in teleost is scarce, especially in half-smooth tongue sole (Cynoglossus semilaevis). In this study, a set of 28 ITG genes in half-smooth tongue sole have been identified and characterized. The phylogenetic analysis showed that ITGα and ITGß subunits were respectively classified into five and two clusters, consistent with previous studies. The selection pressure analysis indicated that most of ITG genes were under purifying selection, except for ITGα11b and ITGαL with positive selection. The expression profiles of eight selected ITG genes, including ITGα1, ITGα5, ITGα8, ITGα11, ITGß1, ITGß2, ITGß3, and ITGß8, were analyzed in healthy tissues and after infection with Vibrio anguillarum, revealed their implications in immune response. The study provided a comprehensive characterization and expression analysis of ITG genes in half-smooth tongue sole, setting a solid foundation for further functional studies and promising potential in disease control.


Assuntos
Linguados , Linguado , Vibrioses , Animais , Filogenia , Integrinas/genética , Integrinas/metabolismo , Perfilação da Expressão Gênica , Linguados/genética , Linguados/metabolismo , Vibrioses/genética , Vibrioses/veterinária , Linguado/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
7.
Fish Shellfish Immunol ; 139: 108873, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271327

RESUMO

The complement system is essential to host defense, but its excessive activation caused by severe pathogen invasion is a driving force in adverse inflammatory. The binding of complement component 5a (C5a) and complement component 5a receptor 1 (C5aR1) is the key to trigger complement-mediated inflammatory response in mammals. However, the role of C5a-C5aR1 axis in fish immune response remains obscure. In this study, the role of C5a-C5aR1 axis of zebrafish (Danio rerio) after serious infection with Aeromonas hydrophila was investigated. C5a and C5aR1 of zebrafish were cloned, with CDS sequences of 228 and 1041 bp, respectively, and they were widely expressed in various tissues with the highest expression in the liver and spleen, respectively. The survival of zebrafish was closely correlated to the dose of A. hydrophila. The cytokine storm occurred at high concentrations of A. hydrophila infection. At 24 h post infection (hpi), the expression of C5a and C5aR1 in the spleen increased 26.8-fold and 9.9-fold in treatment group 1 (TG1, 3.0 × 107 CFU/mL) (P < 0.01), and 4.7-fold and 3.4-fold in treatment group 2 (TG2, 1.0 × 107 CFU/mL) (P < 0.05), respectively. Correspondingly, proinflammatory cytokines interleukin-1ß (IL-1ß), interleukin-8 (IL-8), and interleukin-17 (IL-17) were positively correlated to C5a and C5aR1 at mRNA and protein expression levels. The expression of IL-1ß was significantly increased in the spleen at 6 hpi, with a 599.2-fold and 203.2-fold upregulation in TG1 and TG2 (P < 0.001), respectively. Moreover, after inhibition of C5a-C5aR1 binding treated with C5aR1 antagonist (W-54011), zebrafish showed lower expression of C5a, C5aR1, and cytokines, less intestinal damage, and significantly enhancement of survival (P < 0.05) after A. hydrophila challenge. This study revealed that the inflammatory effect of C5a was achieved by binding to C5aR1 in zebrafish, providing novel insights into using C5a-C5aR1 axis as an effective target to reduce bacterial inflammation and disease in fish.


Assuntos
Aeromonas hydrophila , Peixe-Zebra , Animais , Complemento C5a/metabolismo , Inflamação/genética , Citocinas/genética , Mamíferos/metabolismo
8.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982906

RESUMO

The Pacific white shrimp Litopenaeus vannamei is the most economically important crustacean in the world. The growth and development of shrimp muscle has always been the focus of attention. Myocyte Enhancer Factor 2 (MEF2), a member of MADS transcription factor, has an essential influence on various growth and development programs, including myogenesis. In this study, based on the genome and transcriptome data of L. vannamei, the gene structure and expression profiles of MEF2 were characterized. We found that the LvMEF2 was widely expressed in various tissues, mainly in the Oka organ, brain, intestine, heart, and muscle. Moreover, LvMEF2 has a large number of splice variants, and the main forms are the mutually exclusive exon and alternative 5' splice site. The expression profiles of the LvMEF2 splice variants varied under different conditions. Interestingly, some splice variants have tissue or developmental expression specificity. After RNA interference into LvMEF2, the increment in the body length and weight decreased significantly and even caused death, suggesting that LvMEF2 can affect the growth and survival of L. vannamei. Transcriptome analysis showed that after LvMEF2 was knocked down, the protein synthesis and immune-related pathways were affected, and the associated muscle protein synthesis decreased, indicating that LvMEF2 affected muscle formation and the immune system. The results provide an important basis for future studies of the MEF2 gene and the mechanism of muscle growth and development in shrimp.


Assuntos
Perfilação da Expressão Gênica , Penaeidae , Animais , Fatores de Transcrição MEF2/genética , Transcriptoma , Regulação da Expressão Gênica , Intestinos , Penaeidae/genética , Imunidade Inata/genética
9.
Environ Pollut ; 302: 119022, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219793

RESUMO

Green tide outbreaks caused by overgrowth of Ulva prolifera in the Yellow Sea of China can cause serious ecological stress with concomitant economic hardships, especially to marine fisheries. In this study, short-term effects (14 days) were evaluated using fresh algae U. prolifera (FU), and a 7-day assessment of the effects of decomposing U. prolifera (DU) algal effluent was conducted to determine the effects on the environmental and intestinal microbiota, intestinal transcriptome and mortality of the commercial marine benthic fish, Japanese flounder (Paralichthys olivaceus). The results revealed that algal degradation altered the microbial community structure of fish farm water and fish intestines and increased the relative abundance of the pathogens Flavobacteriaceae in water and Vibrio in fish intestines. Fish intestinal tissue structure appeared to be damaged, as indicated in pathological sections, and transcriptome analysis showed intestinal inflammation after exposure, which may have caused an increase in fish mortality. The degradation of U. prolifera led to a bloom of potential pathogenic bacteria and the inflammation of fish intestines, which resulted in disease in the flounder population that reduced fish harvests and might pose a potential health threat.


Assuntos
Linguado , Microbioma Gastrointestinal , Microbiota , Ulva , Animais , China , Eutrofização , Transcriptoma
10.
3 Biotech ; 11(8): 377, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367869

RESUMO

Two gene of class II photolyases, PiPhr1 (1833 bp) and PiPhr2 (1809 bp), from the Antarctic diatom Phaeodactylum tricornutum ICE-H were cloned, the recombinant proteins expressed and purified. The molecular weight of the recombinant photolyases were determined to be 68 kDa with a pI of 9.04 and 68.82 with a pI of 7.31, respectively. Activity studies showed that both the recombinant enzymes were involved in the repair DNA damaged by UV light, that is they were most likely photolyases involved in photorepair of DNA. Further confirmation of this function was demonstrated by the increased expression of PiPhr1 and PiPhr2 after exposure to UV radiation, blue light and dark conditions by qRT-PCR. In summary, PiPhr1 and PiPhr2 were up regulated by UVB irradiation and blue light at 0.5 h and 3 h. Longtime (3 h) exposure to dark also increased the expression of PiPhr1 and PiPhr2. In vitro photoreactivation assays showed that PiPhr1 and PiPhr2 could repair CPDs utilizing blue light. This is the first time CPD Class II photolyase has been reported from Antarctic diatom. These results will add to the knowledge of the diatom CPF family and assist in understanding the functional role of these genes in Antarctic diatoms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02927-0.

11.
Photochem Photobiol ; 97(6): 1527-1533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34166538

RESUMO

Antarctic mosses are the dominant vegetation in the Antarctic continent. Because of stratospheric ozone depletion, they can withstand physiological extreme UV. The formation of CPD and 6-4PP is one of the most harmful damages of UV to DNA. DNA damage can interfere with replication and transcription, resulting in mutation and death. Two types of photolyase, CPD photolyase and 6-4 photolyase, are capable of specific binding CPD or 6-4PP and repairing these lesions. However, there is little research on photolyase in Antarctic moss. Here, we isolated a gene encoding class II CPD photolyase (PnCPDPhr) and a gene encoding 6-4 photolyase (Pn6-4Phr) from Antarctic moss P. nutans M211. When exposed to UVB, CPDs accumulated in gametophytes and the gene expressions of PnCPDPhr and Pn6-4Phr were both up-regulated. In addition, the in vitro expression and photoreactivation assays of PnCPDPhr and Pn6-4Phr were performed. Our results demonstrated that PnCPDPhr and Pn6-4Phr have an effective activity of DNA repair. This is the first study to determine the CPD accumulation in Antarctic moss as well as the first report isolating CPD photolyase and 6-4 photolyase from Antarctic moss. These results will enrich the knowledge of photolyase family and benefit the exploitation of functioning gene in Antarctic moss.


Assuntos
Briófitas , Desoxirribodipirimidina Fotoliase , Briófitas/genética , Briófitas/metabolismo , Reparo do DNA , Desoxirribodipirimidina Fotoliase/metabolismo , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta
12.
Artigo em Inglês | MEDLINE | ID: mdl-34146917

RESUMO

The liver is a multi-functional organ including metabolism, substance synthesis, detoxification, and various immune functions, and its role in immunity has attracted more and more attention. However, research on the liver immune response of fish infected by pathogenic bacteria is currently lacking. In this study, the transcriptomics and proteomics of the liver of Cynoglossus semilaevis infected with Vibrio anguillarum were analyzed. A total of 1470 genes and 497 proteins were differentially expressed in the pairwise comparison of obvious symptoms of infection (HOSG), no obvious symptoms of infection (NOSG) and PBS treatment (CG). Gene ontology and KEGG enrichment pathways analysis showed that differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were mainly enriched in toll-like receptors (TLRs), complement and coagulation cascades, nucleotide oligomerization domain (NOD)-like receptors (NLRs), mitogen-activated protein kinase (MAPK) and phagosome signaling pathways, which suggested the combined action of the five pathways were significant to enhance the liver immune defense. The combination of transcriptomic and proteomic analysis showed that ITGß1, C3, C5 and MRC1 were significantly up-regulated, which might play an important role in the liver immune response to the recognition of V. anguillarum, inflammatory response and phagocytosis. The transcriptome and proteome data we obtained provide information on some key genes and proteins for further study of the mechanism of liver immune response.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguado/imunologia , Proteoma/metabolismo , Transcriptoma , Vibrioses/microbiologia , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Linguado/genética , Linguado/metabolismo , Linguado/microbiologia , Perfilação da Expressão Gênica , Imunidade , Proteoma/análise , Vibrio/fisiologia
13.
Dev Comp Immunol ; 123: 104156, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34077766

RESUMO

The complement component 6 (C6) gene is a component of the membrane attack complex (MAC), which causes rapid lytic destruction of bacteria. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene stability, including that of immune genes. However, current research on the function of C6 and its regulation by miRNAs is lacking. In the present study, we identified and characterized C6 and a novel miRNA, miR-727 (designated CsC6 and Cse-miR-727, respectively), of the half-smooth tongue sole (Cynoglossus semilaevis) that responded to infection with Vibrio anguillarum, a Gram-negative pathogen of marine fish. The full-length cDNA of CsC6 contained a 256 bp 5' untranslated region (5'-UTR), a 2820 bp open reading frame (ORF) encoding 939 amino acids, and a 205 bp 3'-UTR. SMART analysis showed that CsC6 contains typical C6 domains, including three TSP1 domains, one LDLa domain, one MACPF domain, two CCP domains and two FIMAC domains. CsC6 and Cse-miR-727 are widely expressed in the 13 tissues of half-smooth tongue sole, and their expression in immune tissues is significantly changed after V. anguillarum infection, generally showing an inverse trend. We confirmed that CsC6 was the target gene of Cse-miR-727 using the dual luciferase reporter assay and that Cse-miR-727 regulated CsC6 at the protein level using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The hepatic expression levels of not only the MAC components C7, C8α, C8ß, C8γ and C9 but also the MAPKs, NF-κß, AP-1, IL1ß, IL6 and TNFα, which are involved in many signaling pathways, changed significantly in half-smooth tongue sole following stimulation with the Cse-miR-727 agomir and inhibitor. This evidence suggested that CsC6 could be mediated by Cse-miR-727 to affect MAC assembly and immune signaling pathways in half-smooth tongue soles. To our best knowledge, this study is the first to investigate the regulatory mechanism and immune response of complement genes mediated by miRNAs in fish.


Assuntos
Complemento C6/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Linguados/imunologia , Fígado/fisiologia , MicroRNAs/imunologia , Vibrioses/imunologia , Vibrio/fisiologia , Animais , Bacteriólise/genética , Clonagem Molecular , Complemento C6/genética , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunidade Inata , MicroRNAs/genética
14.
Dev Comp Immunol ; 120: 104043, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33621610

RESUMO

Long noncoding RNAs (lncRNAs) play a multifaceted role in transcriptional regulation and are important regulators of immune function. Scarce information is available regarding lncRNAs in fish. Peripheral blood mononuclear cells participate in the immune response of fish and aid resistance to infection with pathogenic microorganisms. Chitosan oligosaccharide can improve cellular and humoral immunity to enhance disease resistance in fish. In this study, we obtained peripheral blood leukocytes from half-smooth tongue sole and studied the effect of chitosan oligosaccharide on the lncRNA-mRNA expression profile of these cells using high-throughput sequencing and bioinformatics techniques. A total of 609 differentially expressed mRNAs and 50 differentially expressed lncRNAs were identified. The GO term enrichment analysis of the differentially expressed genes was annotated by 220 GO terms, 137 biological processes, 18 cellular components, and 65 molecular functions. Sixteen KEGG pathways, including immune signaling pathways, metabolism, and genetic information processing, were significantly enriched in differentially expressed genes. Thirty-six differentially expressed lncRNAs and 32 differentially expressed mRNAs produced a coexpression network containing 90 relationship pairs. The prediction of lncRNA target genes revealed 244 lncRNAs that potentially cis-regulated 294 differentially expressed mRNAs. qPCR verified that the expression levels of 17 differentially expressed lncRNAs and 15 differentially expressed mRNAs were consistent with the RNA-Seq results. Among them, 6 lncRNAs and 7 mRNAs were differentially expressed genes obtained from the prediction and analysis of lncRNA target genes, and 8 lncRNAs and 4 mRNAs were differentially expressed genes that participated in the construction of the coexpression network. In peripheral blood leukocytes after chitosan oligosaccharide treatment, as well as in peripheral blood and spleen after Vibrio anguillarum stimulation, lncRNAs and mRNAs showed significant differential expression. The results indicated that they may be related to the immune response, providing novel reference information for further research on the role of lncRNAs in immune regulation in half-smooth tongue sole.


Assuntos
Quitosana/administração & dosagem , Linguados/imunologia , Redes Reguladoras de Genes/efeitos dos fármacos , Leucócitos/imunologia , Animais , Biologia Computacional , Resistência à Doença/efeitos dos fármacos , Linguados/sangue , Linguados/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes/imunologia , Leucócitos/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq , Vibrio/imunologia
15.
Fish Shellfish Immunol ; 104: 101-110, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32464273

RESUMO

The ninth complement component (C9) is a terminal complement component (TCC) that is involved in creating the membrane attack complex (MAC) on the target cell surface. In this study, the CsC9 (C9 of Cynoglossus semilaevis) cDNA sequence was cloned and characterized. The full-length CsC9 cDNA measured 2,150 bp, containing an open reading frame (ORF) of 1,803 bp, a 5'-untranslated region (UTR) of 24 bp and a 3'-UTR of 323 bp. A domain search revealed that the CsC9 protein contains five domains, including two TSP1s, an LDLRA, an EGF, and a MACPF. Quantitative real-time PCR analysis showed that CsC9 at the mRNA level was expressed in all the tested tissues, with the highest expression being observed in the liver. CsC9 expression is significantly upregulated in the tested tissues after challenge with Vibrio anguillarum. To further characterize the role of CsC9, peripheral blood mononuclear cells of C. semilaevis were used for transcriptome analysis after incubation with recombinant CsC9 (rCsC9) protein. A total of 3,775 significant differentially expressed genes (DEGs) were identified between the control and the rCsC9-treated group, including 2,063 upregulated genes and 1,712 downregulated genes. KEGG analyses revealed that the DEGs were enriched in cell adhesion molecules, cytokine-cytokine receptor interactions, T cell receptor signaling pathways, B cell receptor signaling pathways and Toll-like receptor signaling pathways. The results of this study indicate that in addition to participating in MAC formation, CsC9 might play multiple roles in the innate and adaptive immunity of C. semilaevis.


Assuntos
Complemento C9/genética , Complemento C9/imunologia , Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Adaptativa , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Complemento C9/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Leucócitos/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência/veterinária , Transcriptoma , Vibrio , Vibrioses
16.
Fish Shellfish Immunol ; 95: 679-687, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31678184

RESUMO

Collectin 11 (CL-11, also known as collectin kidney-1, CL-K1), a new member of the vertebrate C-type lectin superfamily, plays an important role in innate immunity as a pattern recognition molecule of the lectin complement pathway. However, little is known about CL-11 in teleosts. In the present study, a CL-11 homolog was identified and characterized from half-smooth tongue sole (Cynoglossus semilaevis) (designated as CsCL-11). The full-length cDNA of CsCL-11 is 1220 bp long and includes a 5'untranslated region (5'-UTR) of 180 bp, a 3'-UTR of 218 bp and an open reading frame (ORF) of 819 bp encoding 273 amino acids. Multiple sequence alignment revealed that the deduced CsCL-11 protein has the typical modular architecture (EPN and WTD) conserved throughout vertebrates, suggesting a conserved function of CsCL-11. Tissue expression profile analysis by quantitative real-time PCR (qRT-PCR) showed CsCL-11 to be ubiquitously distributed in tissues and highly expressed in the ovary and liver. A pattern of significant upregulation of CsCL-11 expression was observed in the blood, spleen, head kidney and gill at 6 h, 12 h and 24 h after infection with Vibrio anguillarum, and western blotting showed that natural CsCL-11 protein levels in the blood were significantly increased after V. anguillarum infection. Moreover, by binding to various bacteria, recombinant CsCL-11 (rCsCL-11) expressed in HEK-293 T cells displayed strong antibacterial activity. Taken together, these results suggest that CsCL-11 is a unique C-type lectin that is likely involved in host defense against bacterial infection. To our knowledge, this is the first study on CL-11 in marine fish.


Assuntos
Colectinas/genética , Proteínas do Sistema Complemento/imunologia , Proteínas de Peixes/genética , Linguados/imunologia , Vibrioses/veterinária , Animais , Colectinas/classificação , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/classificação , Linguados/genética , Perfilação da Expressão Gênica , Vibrioses/imunologia
17.
Fish Shellfish Immunol ; 89: 271-280, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30940580

RESUMO

Lysin motif (LysM) is involved in chitin, peptidoglycan and other structurally-related oligosaccharides recognition and binding, and it is important for the biological processes of responsing to bacterial and viral infections and pathogen defense. LysM is also a widely spread protein, ranging from prokaryotes to eukaryotes, including bacteria, plants and mammals. However, research of LysM in teleosts especially in marine fish was rarely scarce. In the present study, four novel LysM domain-containing proteins in turbot (Scophthalmus maximus), named as SmLysMd1, SmLysMd2, SmLysMd3, and SmLysMd4, were cloned and identified firstly. The full-length cDNA of SmLysMd1 was 1235 bp with a 678 bp ORF, capable of encoding a peptide of 225 amino acids. The complete cDNA sequence of SmLysMd2 was 1273 bp, and contained a 675 bp ORF, encoding a predicted protein of 224 amino acids. The full-length of SmLysMd3 cDNA was 2132 bp, containing a ORF of 987 bp, with a ORF of encoding 328 amino acids. The full-length SmLysMd4 cDNA was 1115 bp contained a 888 bp ORF, encoding 295 amino acids. And all the four predicated proteins contained a specific LYSM domain. Moreover, SmLysMd1 and SmLysMd2 belong to the intracellular non-secretory types, and SmLysMd3 and SmLysMd4 belong to the anchored transmembrane types. In addition, the four SmLysMd were ubiquitously expressed in all the examined tissues. Moreover, the SmLysMds levels were up-regulated in muscle and liver, and had a reduce tendency immediately in different degree following Vibrio vulnificus challenge, indicating that the turbot LysM could be participant in the immune responses to bacterial infections. The present result of LysM in turbot for the first time in a marine fish will provide foundation knowledge for the functions studies of LysM in immune responses. Further studies should be carried out to better understand their immune mechanism in turbot and other teleosts.


Assuntos
Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Proteínas de Membrana/química , Domínios Proteicos , Alinhamento de Sequência/veterinária , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio vulnificus/fisiologia
18.
Mar Drugs ; 17(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934847

RESUMO

This study was initiated to screen for marine bacterial agents to biocontrol Magnaporthe grisea, a serious fungal pathogen of cereal crops. A bacterial strain, isolated from the cold seep in deep sea, exhibited strong growth inhibition against M. grisea, and the strain was identified and designated as Bacillus sp. CS30. The corresponding antifungal agents were purified by acidic precipitation, sequential methanol extraction, Sephadex LH-20 chromatography, and reversed phase high-performance liquid chromatography (RP-HPLC), and two antifungal peaks were obtained at the final purification step. After analysis by mass spectrometry (MS) and tandem MS, two purified antifungal agents were deduced to belong to the surfactin family, and designated as surfactin CS30-1 and surfactin CS30-2. Further investigation showed that although the antifungal activity of surfactin CS30-1 is higher than that of surfactin CS30-2, both of them induced the increased generation of reactive oxygen species (ROS) and caused serious damage to the cell wall and cytoplasm, thus leading to the cell death of M. grisea. Our results also show the differences of the antifungal activity and antifungal mechanism of the different surfactin homologs surfactin CS30-1 and surfactin CS30-2, and highlight them as potential promising agents to biocontrol plant diseases caused by M. grisea.


Assuntos
Antifúngicos/farmacologia , Bacillus/metabolismo , Lipopeptídeos/farmacologia , Magnaporthe/efeitos dos fármacos , Tensoativos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Bactérias/metabolismo , Lipopeptídeos/biossíntese , Lipopeptídeos/isolamento & purificação , Magnaporthe/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Espécies Reativas de Oxigênio/metabolismo , Tensoativos/isolamento & purificação , Tensoativos/metabolismo
19.
Fish Shellfish Immunol ; 72: 658-669, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29146450

RESUMO

Complement component C8, which mediates membrane attack complex formation and bacterial lysis, plays important roles in the complement system. The cDNA sequences of the C8α, C8ß and C8γ genes were cloned from half-smooth tongue sole (Cynoglossus semilaevis). Full-length cDNA of CsC8α (C8α of C. semilaevis), CsC8ß and CsC8γ was 1990, 2219 and 886 bp, respectively, which contained open reading frames of 1797, 1749 and 666 bp, encoding 598, 582 and 221 amino acids, respectively. The deduced proteins of CsC8α, CsC8ß and CsC8γ showed the closest amino acid similarity to C8α (73%) of Siniperca chuatsi, C8ß (76%) of Oryzias latipes and C8γ (72%) of Takifugu rubripes, respectively. The highest expression level of CsC8α, CsC8ß and CsC8γ among the 13 normal tissues was observed in liver tissue, followed by much lower levels in other tissues. After infection with Vibrio anguillarum, CsC8α, CsC8ß and CsC8γ were significantly up-regulated in all of the detected tissues, including the intestine, liver, gill, head kidney, blood and spleen. Then, a recombinant expression plasmid was constructed, and the recombinant CsC8α protein was expressed in GS115 pichia pastoris yeast. Furthermore, to investigate the biological functions of recombinant CsC8α, an antibacterial assay was performed, and the results showed that recombinant CsC8α obviously inhibited growth of V. anguillarum, Edwardsiella tarda and Vibrio parahaemolyticus. Taken together, these results suggest that CsC8α, CsC8ß and CsC8γ may play important roles in the immune defense of C. semilaevis.


Assuntos
Complemento C8/genética , Complemento C8/imunologia , Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Humoral/genética , Sequência de Aminoácidos , Animais , Infecções Bacterianas/imunologia , Sequência de Bases , Complemento C8/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Micoses/imunologia , Filogenia , Alinhamento de Sequência/veterinária
20.
Mar Drugs ; 15(7)2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28698510

RESUMO

Pseudomonas stutzeri 273 is a marine bacterium producing exopolysaccharide 273 (EPS273) with high anti-biofilm activity against P. aeruginosa PAO1. Here, the complete genome of P.stutzeri 273 was sequenced and the genome contained a circular 5.03 Mb chromosome. With extensive analysis of the genome, a genetic locus containing 18 genes was predicted to be involved in the biosynthesis of EPS273. In order to confirm this prediction, two adjacent genes (eps273-H and eps273-I) encoding glycosyltransferases and one gene (eps273-O) encoding tyrosine protein kinase within the genetic locus were deleted and biosynthesis of EPS273 was checked in parallel. The molecular weight profile of EPS purified from the mutant Δeps273-HI was obviously different from that purified from wild-type P.stutzeri 273, while the corresponding EPS was hardly detected from the mutant Δeps273-O, which indicated the involvement of the proposed 18-gene cluster in the biosynthesis of EPS273. Moreover, the mutant Δeps273-HI had the biofilm formed earlier compared with the wild type, and the mutant Δeps273-O almost completely lost the ability of biofilm formation. Therefore, EPS273 might facilitate the biofilm formation for its producing strain P.stutzeri 273 while inhibiting the biofilm formation of P. aeruginosa PAO1. This study can contribute to better understanding of the biosynthesis of EPS273 and disclose the biological function of EPS273 for its producing strain P.stutzeri 273.


Assuntos
Genes Bacterianos/genética , Genoma Bacteriano/genética , Família Multigênica/genética , Polissacarídeos Bacterianos/genética , Pseudomonas stutzeri/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Biofilmes , Pseudomonas aeruginosa/genética , Análise de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...