Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(33): 43462-43473, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109991

RESUMO

The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells. Electrochemical characterization shows remarkable oxygen reduction reaction (fuel cell mode) and oxygen evolution activity (electrolysis mode) in comparison with state-of-the-art bulk electrodes, combined with outstanding long-term stability at operational temperatures of 700 °C. The disordered nanostructure was implemented as a standalone oxygen electrode on commercial anode-supported cells, resulting in high electrical output in fuel cell and electrolysis mode for active layer thicknesses of only 200 nm (>95% decrease in critical raw materials with respect to conventional cathodes). The cell was operated for over 300 h in fuel cell mode displaying excellent stability. Our findings unlock the hidden potential of advanced thin-film technologies for obtaining high-performance disordered electrodes based on nanocomposite self-assembly combining long durability and minimized use of critical raw materials.

2.
J Phys Chem C Nanomater Interfaces ; 127(41): 20325-20336, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37876977

RESUMO

A fundamental understanding of the electrochemical reactions and surface chemistry at the solid-gas interface in situ and operando is critical for electrode materials applied in electrochemical and catalytic applications. Here, the surface reactions and surface composition of a model of mixed ionic and electronic conducting (MIEC) perovskite oxide, (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ (LSCrF8255), were investigated in situ using synchrotron-based near-ambient pressure (AP) X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). The measurements were conducted with a surface temperature of 500 °C under 1 mbar of dry oxygen and water vapor, to reflect the implementation of the materials for oxygen reduction/evolution and H2O electrolysis in the applications such as solid oxide fuel cell (SOFC) and electrolyzers. Our direct experimental results demonstrate that, rather than the transition metal (TM) cations, the surface lattice oxygen is the significant redox active species under both dry oxygen and water vapor environments. It was proven that the electron holes formed in dry oxygen have a strong oxygen character. Meanwhile, a relatively higher concentration of surface oxygen vacancies was observed on the sample measured in water vapor. We further showed that in water vapor, the adsorption and dissociation of H2O onto the perovskite surface were through forming hydroxyl groups. In addition, the concentration of Sr surface species was found to increase over time in dry oxygen due to Sr surface segregation, with the presence of oxygen holes on the surface serving as an additional driving force. Comparatively, less Sr contents were observed on the sample in water vapor, which could be due to the volatility of Sr(OH)2. A secondary phase was also observed, which exhibited an enrichment in B-site cations, particularly in Fe and relatively in Cr, and a deficiency in A-site cation, notably in La and relatively in Sr. The findings and methodology of this study allow for the quantification of surface defect chemistry and surface composition evolution, providing crucial understanding and design guidelines in the electrocatalytic activity and durability of electrodes for efficient conversions of energy and fuels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA