Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 24(6): e202200680, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36383485

RESUMO

Calculations of spectroscopic properties of the CnO and FlO molecules are performed using ab initio all-electron 4c- and 2c-relativistic coupled-cluster approaches with single, double, and perturbative triple excitations. The corresponding calculation for HgO is also accomplished for comparison with the published data. The dependence of the results on the parameters of the basis set and approximations used is investigated in detail. The overall relative uncertainties of the recommended values on the level of 1-2 % are reached. The calculated spectroscopic constants are indicative of the following trend in the reactivity of the oxides HgO>FlO>CnO. This is confirmed by the trend in the adsorption energies, Eads , of these molecules on the surfaces of gold, quartz, and Teflon. The predicted rather low Eads values for the latter case should guarantee their delivery from the recoil chamber to the chemistry set up in gas-phase experiments.

2.
Phys Rev Lett ; 120(9): 093001, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547322

RESUMO

A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (µ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of µ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that µ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

3.
Nat Commun ; 7: 10246, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26776466

RESUMO

The magnetic moment µ of a bound electron, generally expressed by the g-factor µ=-g µB s h(-1) with µB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions and sensitively probe nuclear effects. Here, we present calculations and experiments on the isotope dependence of the Zeeman effect in lithium-like calcium ions. The good agreement between the theoretical predicted recoil contribution and the high-precision g-factor measurements paves the way for a new generation of BS-QED tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...