Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 31(25): 2768-2778, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026942

RESUMO

RHO GTPases are key regulators of the cytoskeletal architecture, which impact a broad range of biological processes in malignant cells including motility, invasion, and metastasis, thereby affecting tumor progression. One of the constraints during cell migration is the diameter of the pores through which cells pass. In this respect, the size and shape of the nucleus pose a major limitation. Therefore, enhanced nuclear plasticity can promote cell migration. Nuclear morphology is determined in part through the cytoskeleton, which connects to the nucleoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Here, we unravel the role of RAC1 as an orchestrator of nuclear morphology in melanoma cells. We demonstrate that activated RAC1 promotes nuclear alterations through its effector PAK1 and the tubulin cytoskeleton, thereby enhancing migration and intravasation of melanoma cells. Disruption of the LINC complex prevented RAC1-induced nuclear alterations and the invasive properties of melanoma cells. Thus, RAC1 induces nuclear morphology alterations through microtubules and the LINC complex to promote an invasive phenotype in melanoma cells.


Assuntos
Núcleo Celular/metabolismo , Melanoma/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Forma do Núcleo Celular/fisiologia , Embrião de Galinha , Citoesqueleto/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Invasividade Neoplásica/genética , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
2.
Curr Biol ; 27(19): 2999-3009.e9, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28966089

RESUMO

The nucleus is the main microtubule-organizing center (MTOC) in muscle cells due to the accumulation of centrosomal proteins and microtubule (MT) nucleation activity at the nuclear envelope (NE) [1-4]. The relocalization of centrosomal proteins, including Pericentrin, Pcm1, and γ-tubulin, depends on Nesprin-1, an outer nuclear membrane (ONM) protein that connects the nucleus to the cytoskeleton via its N-terminal region [5-7]. Nesprins are also involved in the recruitment of kinesin to the NE and play a role in nuclear positioning in skeletal muscle cells [8-12]. However, a function for MT nucleation from the NE in nuclear positioning has not been established. Using the proximity-dependent biotin identification (BioID) method [13, 14], we found several centrosomal proteins, including Akap450, Pcm1, and Pericentrin, whose association with Nesprin-1α is increased in differentiated myotubes. We show that Nesprin-1α recruits Akap450 to the NE independently of kinesin and that Akap450, but not other centrosomal proteins, is required for MT nucleation from the NE. Furthermore, we demonstrate that this mechanism is disrupted in congenital muscular dystrophy patient myotubes carrying a nonsense mutation within the SYNE1 gene (23560 G>T) encoding Nesprin-1 [15, 16]. Finally, using computer simulation and cell culture systems, we provide evidence for a role of MT nucleation from the NE on nuclear spreading in myotubes. Our data thus reveal a novel function for Nesprin-1α/Nesprin-1 in nuclear positioning through recruitment of Akap450-mediated MT nucleation activity to the NE.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Linhagem Celular , Proteínas do Citoesqueleto , Feminino , Células HeLa , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ratos
3.
F1000Res ; 6: 1622, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29026530

RESUMO

The centrosome is an unusual organelle that lacks a surrounding membrane, raising the question of what limits its size and shape. Moreover, while electron microscopy (EM) has provided a detailed view of centriole architecture, there has been limited understanding of how the second major component of centrosomes, the pericentriolar material (PCM), is organized. Here, we summarize exciting recent findings from super-resolution fluorescence imaging, structural biology, and biochemical reconstitution that together reveal the presence of ordered layers and complex gel-like scaffolds in the PCM. Moreover, we discuss how this is leading to a better understanding of the process of microtubule nucleation, how alterations in PCM size are regulated in cycling and differentiated cells, and why mutations in PCM components lead to specific human pathologies.

4.
Hum Mol Genet ; 26(12): 2258-2276, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28398466

RESUMO

Nesprins-1 and -2 are highly expressed in skeletal and cardiac muscle and together with SUN (Sad1p/UNC84)-domain containing proteins and lamin A/C form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) bridging complex at the nuclear envelope (NE). Mutations in nesprin-1/2 have previously been found in patients with autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) as well as dilated cardiomyopathy (DCM). In this study, three novel rare variants (R8272Q, S8381C and N8406K) in the C-terminus of the SYNE1 gene (nesprin-1) were identified in seven DCM patients by mutation screening. Expression of these mutants caused nuclear morphology defects and reduced lamin A/C and SUN2 staining at the NE. GST pull-down indicated that nesprin-1/lamin/SUN interactions were disrupted. Nesprin-1 mutations were also associated with augmented activation of the ERK pathway in vitro and in hearts in vivo. During C2C12 muscle cell differentiation, nesprin-1 levels are increased concomitantly with kinesin light chain (KLC-1/2) and immunoprecipitation and GST pull-down showed that these proteins interacted via a recently identified LEWD domain in the C-terminus of nesprin-1. Expression of nesprin-1 mutants in C2C12 cells caused defects in myoblast differentiation and fusion associated with dysregulation of myogenic transcription factors and disruption of the nesprin-1 and KLC-1/2 interaction at the outer nuclear membrane. Expression of nesprin-1α2 WT and mutants in zebrafish embryos caused heart developmental defects that varied in severity. These findings support a role for nesprin-1 in myogenesis and muscle disease, and uncover a novel mechanism whereby disruption of the LINC complex may contribute to the pathogenesis of DCM.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Técnicas de Cultura de Células , Proteínas do Citoesqueleto , Citoesqueleto/metabolismo , Humanos , Cinesinas , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Membrana Nuclear/metabolismo , Peixe-Zebra/genética
5.
Nat Commun ; 7: 11084, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025256

RESUMO

Cyclin-dependent kinases (CDKs) play key roles in cell cycle regulation. Genetic analysis in mice has revealed an essential role for Cdk2 in meiosis, which renders Cdk2 knockout (KO) mice sterile. Here we show that mice deficient in RingoA, an atypical activator of Cdk1 and Cdk2 that has no amino acid sequence homology to cyclins, are sterile and display meiotic defects virtually identical to those observed in Cdk2 KO mice including non-homologous chromosome pairing, unrepaired double-strand breaks, undetectable sex-body and pachytene arrest. Interestingly, RingoA is required for Cdk2 targeting to telomeres and RingoA KO spermatocytes display severely affected telomere tethering as well as impaired distribution of Sun1, a protein essential for the attachment of telomeres to the nuclear envelope. Our results identify RingoA as an important activator of Cdk2 at meiotic telomeres, and provide genetic evidence for a physiological function of mammalian Cdk2 that is not dependent on cyclins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Meiose , Membrana Nuclear/metabolismo , Telômero/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Pareamento Cromossômico , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Prófase Meiótica I , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Estágio Paquíteno , Ligação Proteica , Espermatócitos/patologia
6.
Nucleus ; 5(5): 462-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482198

RESUMO

At the onset mitosis in higher eukaryotes, the nuclear envelope (NE) undergoes dramatic deconstruction to allow separation of duplicated chromosomes. Studies have shown that during this process of nuclear envelope breakdown (NEBD), the extensive protein networks of the nuclear lamina are disassembled through phosphorylation of lamins and several inner nuclear membrane (INM) proteins. The LINC complex, composed of SUN and nesprin proteins, is involved in multiple interactions at the NE and plays vital roles in nuclear and cellular mechanics by connecting the nucleus to the cytoskeleton. Here, we show that SUN1, located in the INM, undergoes mitosis-specific phosphorylation on at least 3 sites within its nucleoplasmic N-terminus. We further identify Cdk1 as the kinase responsible for serine 48 and 333 phosphorylation, while serine 138 is phosphorylated by Plk1. In mitotic cells, SUN1 loses its interaction with N-terminal domain binding partners lamin A/C, emerin, and short nesprin-2 isoforms. Furthermore, a triple phosphomimetic SUN1 mutant displays increased solubility and reduced retention at the NE. In contrast, the central LINC complex interaction between the SUN1 C-terminus and the KASH domain of nesprin-2 is maintained during mitosis. Together, these data support a model whereby mitotic phosphorylation of SUN1 disrupts interactions with nucleoplasmic binding partners, promoting disassembly of the nuclear lamina and, potentially, its chromatin interactions. At the same time, our data add to an emerging picture that the core LINC complex plays an active role in NEBD.


Assuntos
Lamina Tipo A/metabolismo , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Mitose/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Proteína Quinase CDC2/metabolismo , Núcleo Celular/genética , Cromatina/genética , Células HeLa , Humanos , Lamina Tipo A/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/genética , Proteínas Nucleares/metabolismo , Fosforilação
7.
PLoS Genet ; 10(9): e1004605, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210889

RESUMO

Proteins of the nuclear envelope (NE) are associated with a range of inherited disorders, most commonly involving muscular dystrophy and cardiomyopathy, as exemplified by Emery-Dreifuss muscular dystrophy (EDMD). EDMD is both genetically and phenotypically variable, and some evidence of modifier genes has been reported. Six genes have so far been linked to EDMD, four encoding proteins associated with the LINC complex that connects the nucleus to the cytoskeleton. However, 50% of patients have no identifiable mutations in these genes. Using a candidate approach, we have identified putative disease-causing variants in the SUN1 and SUN2 genes, also encoding LINC complex components, in patients with EDMD and related myopathies. Our data also suggest that SUN1 and SUN2 can act as disease modifier genes in individuals with co-segregating mutations in other EDMD genes. Five SUN1/SUN2 variants examined impaired rearward nuclear repositioning in fibroblasts, confirming defective LINC complex function in nuclear-cytoskeletal coupling. Furthermore, myotubes from a patient carrying compound heterozygous SUN1 mutations displayed gross defects in myonuclear organization. This was accompanied by loss of recruitment of centrosomal marker, pericentrin, to the NE and impaired microtubule nucleation at the NE, events that are required for correct myonuclear arrangement. These defects were recapitulated in C2C12 myotubes expressing exogenous SUN1 variants, demonstrating a direct link between SUN1 mutation and impairment of nuclear-microtubule coupling and myonuclear positioning. Our findings strongly support an important role for SUN1 and SUN2 in muscle disease pathogenesis and support the hypothesis that defects in the LINC complex contribute to disease pathology through disruption of nuclear-microtubule association, resulting in defective myonuclear positioning.


Assuntos
Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Distrofias Musculares/genética , Distrofias Musculares/patologia , Proteínas Nucleares/genética , Animais , Núcleo Celular/genética , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Distrofias Musculares/metabolismo , Mutação/genética , Mioblastos/metabolismo , Mioblastos/patologia , Células NIH 3T3 , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Proteínas Nucleares/metabolismo
8.
Hum Mol Genet ; 22(10): 2105-18, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23406872

RESUMO

Idiopathic infantile nystagmus (IIN) is a genetically heterogeneous disorder of eye movement that can be caused by mutations in the FRMD7 gene that encodes a FERM domain protein. FRMD7 is expressed in the brain and knock-down studies suggest it plays a role in neurite extension through modulation of the actin cytoskeleton, yet little is known about its precise molecular function and the effects of IIN mutations. Here, we studied four IIN-associated missense mutants and found them to have diverse effects on FRMD7 expression and cytoplasmic localization. The C271Y mutant accumulates in the nucleus, possibly due to disruption of a nuclear export sequence located downstream of the FERM-adjacent domain. While overexpression of wild-type FRMD7 promotes neurite outgrowth, mutants reduce this effect to differing degrees and the nuclear localizing C271Y mutant acts in a dominant-negative manner to inhibit neurite formation. To gain insight into FRMD7 molecular function, we used an IP-MS approach and identified the multi-domain plasma membrane scaffolding protein, CASK, as a FRMD7 interactor. Importantly, CASK promotes FRMD7 co-localization at the plasma membrane, where it enhances CASK-induced neurite length, whereas IIN-associated FRMD7 mutations impair all of these features. Mutations in CASK cause X-linked mental retardation. Patients with C-terminal CASK mutations also present with nystagmus and, strikingly, we show that these mutations specifically disrupt interaction with FRMD7. Together, our data strongly support a model whereby CASK recruits FRMD7 to the plasma membrane to promote neurite outgrowth during development of the oculomotor neural network and that defects in this interaction result in nystagmus.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação de Sentido Incorreto , Neuritos/metabolismo , Nistagmo Congênito/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proteínas do Citoesqueleto/genética , Guanilato Quinases/genética , Humanos , Proteínas de Membrana/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Neuritos/patologia , Nistagmo Congênito/genética , Nistagmo Congênito/patologia , Estrutura Terciária de Proteína
9.
J Ophthalmol ; 2012: 460956, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21904664

RESUMO

Idiopathic infantile nystagmus (IIN) is an inherited disorder in which the nystagmus arises independently of any other symptoms, leading to the speculation that the disorder represents a primary defect in the area of the brain responsible for ocular motor control. The inheritance patterns are heterogeneous, however the most common form is X-linked. FRMD7 resides at Xq26-27 and approximately 50% of X-linked IIN families map to this region. Currently 45 mutations within FRMD7 have been associated with IIN, confirming the importance of FRMD7 in the pathogenesis of the disease. Although mutations in FRMD7 are known to cause IIN, very little is known about the function of the protein. FRMD7 contains a conserved N-terminal FERM domain suggesting that it may provide a link between the plasma membrane and actin cytoskeleton. Limited studies together with the knowledge of the function of other FERM domain containing proteins, suggest that FRMD7 may play a role in membrane extension during neuronal development through remodeling of the actin cytoskeleton.

10.
Biochem Soc Trans ; 39(6): 1683-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103507

RESUMO

The fifth U.K. meeting on nuclear envelope disease and chromatin brought together international experts from across the field of nuclear envelope biology to discuss the advancements in a class of tissue-specific degenerative diseases called the laminopathies. Clinically, these range from relatively mild fat-wasting disorders to the severe premature aging condition known as Hutchinson-Gilford progeria syndrome. Since the first association of the nuclear envelope with human inherited disease in 1994, there has been an exponential increase in an unexpected variety of functions associated with nuclear envelope proteins, ranging from mechanical support and nucleocytoskeletal connections to regulation of chromatin organization and gene expression. This Biochemical Society Focused Meeting reinforced the functional complexity of nuclear-associated diseases, revealed new avenues to be investigated and highlighted the signalling pathways suitable as therapeutic targets.


Assuntos
Cromatina/metabolismo , Doença , Membrana Nuclear/patologia , Animais , Humanos , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Progéria/terapia
11.
FASEB J ; 25(11): 3966-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21840938

RESUMO

Mutations in the lamin A/C gene (LMNA) cause several disorders referred to as laminopathies, which include premature aging syndromes, lipodystrophy, and striated muscle disorders. There is evidence that lamin A/C plays a role in gene expression. MicroRNAs (miRNAs) are short noncoding RNAs regulating mRNAs involved in various biological processes, including the pathophysiology of striated muscles. Here, we profiled the expression of the miRNA transcriptome in skeletal muscle from patients with LMNA-related muscular dystrophy. Results show that control and patient groups can be distinguished based on their miRNA expression profile. Sixteen miRNAs are significantly dysregulated in patients compared with controls. Pathway enrichment analysis in the predicted targets of these miRNAs revealed pathways involved in muscle repair, such as MAPK, transforming growth factor-ß, and Wnt signaling. Interestingly, 9 of these miRNAs (hsa-miR-100, -127-3p, -148a, -136*, -192, -335, -376c, -489, and -502-3p) are highly expressed in fetal muscle, suggesting that the fetal miRNA gene program mediates a regenerative process. Overexpression of these miRNAs in C2C12 mouse myoblasts revealed that 3 of them (miR-100, -192, and -335) participate in muscle proliferation and differentiation. We identified target genes that likely mediate this effect, which include the calcineurin gene PPP3CA. Our findings are the first to demonstrate that miRNA expression is affected in laminopathies.


Assuntos
Lamina Tipo A/genética , MicroRNAs/genética , Distrofias Musculares/genética , Animais , Diferenciação Celular , Proliferação de Células , Expressão Gênica , Humanos , Camundongos , MicroRNAs/fisiologia , Músculo Esquelético/metabolismo , Distrofias Musculares/patologia , Regulação para Cima
12.
Biochem Soc Trans ; 38(Pt 1): 281-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20074075

RESUMO

HGPS (Hutchinson-Gilford progeria syndrome) is a severe childhood disorder that appears to mimic an accelerated aging process. The disease is most commonly caused by gene mutations that disrupt the normal post-translational processing of lamin A, a structural component of the nuclear envelope. Impaired processing results in aberrant retention of a farnesyl group at the C-terminus of lamin A, leading to altered membrane dynamics. It has been widely proposed that persistence of the farnesyl moiety is the major factor responsible for the disease, prompting clinical trials of farnesyltransferase inhibitors to prevent lamin A farnesylation in children afflicted with HGPS. Although there is evidence implicating farnesylation in causing some of the cellular defects of HGPS, results of several recent studies suggest that aberrant lamin A farnesylation is not the only determinant of the disease. These findings have important implications for the design of treatments for this devastating disease.


Assuntos
Lamina Tipo A , Progéria/genética , Sequência de Aminoácidos , Criança , Ensaios Clínicos como Assunto , Inibidores Enzimáticos/uso terapêutico , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Genótipo , Humanos , Lactente , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Dados de Sequência Molecular , Mutação , Membrana Nuclear/metabolismo , Fenótipo , Prenilação , Progéria/tratamento farmacológico , Progéria/patologia , Progéria/fisiopatologia
13.
J Biol Chem ; 285(5): 3487-98, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19933576

RESUMO

The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209-228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Distrofia Muscular de Emery-Dreifuss/patologia , Membrana Nuclear/metabolismo , Proteínas Nucleares/fisiologia , Progéria/patologia , Proteínas de Ligação a Telômeros/fisiologia , Animais , Núcleo Celular/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/química , Camundongos , Distrofia Muscular de Emery-Dreifuss/metabolismo , Células NIH 3T3 , Progéria/metabolismo , Isoformas de Proteínas , Estrutura Terciária de Proteína
14.
Mol Cell Biol ; 26(10): 3738-51, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16648470

RESUMO

Nuclear migration and positioning within cells are critical for many developmental processes and are governed by the cytoskeletal network. Although mechanisms of nuclear-cytoskeletal attachment are unclear, growing evidence links a novel family of nuclear envelope (NE) proteins that share a conserved C-terminal SUN (Sad1/UNC-84 homology) domain. Analysis of Caenorhabditis elegans mutants has implicated UNC-84 in actin-mediated nuclear positioning by regulating NE anchoring of a giant actin-binding protein, ANC-1. Here, we report the identification of SUN1 as a lamin A-binding protein in a yeast two-hybrid screen. We demonstrate that SUN1 is an integral membrane protein located at the inner nuclear membrane. While the N-terminal domain of SUN1 is responsible for detergent-resistant association with the nuclear lamina and lamin A binding, lamin A/C expression is not required for SUN1 NE localization. Furthermore, SUN1 does not interact with type B lamins, suggesting that NE localization is ensured by binding to an additional nuclear component(s), most likely chromatin. Importantly, we find that the luminal C-terminal domain of SUN1 interacts with the mammalian ANC-1 homologs nesprins 1 and 2 via their conserved KASH domain. Our data provide evidence of a physical nuclear-cytoskeletal connection that is likely to be a key mechanism in nuclear-cytoplasmic communication and regulation of nuclear position.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Lamina Tipo A/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular Tumoral , Proteínas do Citoesqueleto , Fibroblastos/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Modelos Biológicos , Dados de Sequência Molecular , Células NIH 3T3 , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
15.
J Biol Chem ; 277(46): 43631-7, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12218050

RESUMO

In the absence of ligand, the insulin receptor is maintained on microvilli on the cell surface. A dileucine motif (LL(986-987)) is necessary but not sufficient for this anchoring, which also required the presence of additional sequence(s) downstream of position 1000. The aim of the present study was to identify this (these) additional sequence(s). First, exons 16 or 17 were fused to the extracellular and transmembrane domains of complement receptor 1 and stably expressed in Chinese hamster ovary cells. Results obtained indicate that exon 17 is sufficient for anchoring to microvilli. Second, analysis of insulin receptor mutants truncated within exon 17 demonstrated that whereas receptors truncated at position 1000 showed no preferential association with microvilli, receptors truncated at position 1012 displayed a level of association identical to that of the full-length insulin receptor. Third, mutation of a diisoleucine motif (II(1006-1007)) present within this 12-amino acid stretch abrogated the preferential association of the receptor with microvilli. These results indicate that the domain required for association of insulin receptor with microvilli is contained within the region encoded by exon 17 and that, within this sequence, two dileucine-like motifs (LL(986-987) and II(1006-1007)) play a crucial role.


Assuntos
Leucina/química , Microvilosidades/ultraestrutura , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Motivos de Aminoácidos , Animais , Células CHO , Células Cultivadas , Cricetinae , Citoesqueleto/metabolismo , DNA Complementar/metabolismo , Éxons , Ligantes , Microscopia Eletrônica , Modelos Biológicos , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura , Fatores de Tempo
16.
Hum Mol Genet ; 11(7): 769-77, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11929849

RESUMO

The gene encoding nuclear lamins A and C is mutated in at least three inherited disorders. Two of these, Emery-Dreifuss muscular dystrophy (EDMD-AD) and a form of dilated cardiomyopathy (CMD1A), involve muscle defects, and the other, familial partial lipodystrophy (FPLD), involves loss of subcutaneous adipose tissue. Mutations causing FPLD, in contrast to those causing muscle disorders, are tightly clustered within the C-terminal domain of lamin A/C. We investigated the expression and subcellular localization of FPLD lamin A mutants and found no abnormalities. We therefore set out to identify proteins interacting with the C-terminal domain of lamin A by screening a mouse 3T3-L1 adipocyte library in a yeast two-hybrid interaction screen. Using this approach, the adipocyte differentiation factor, sterol response element binding protein 1 (SREBP1) was identified as a novel lamin A interactor. In vitro glutathione S-transferase pull-down and in vivo co-immunoprecipitation studies confirmed an interaction between lamin A and both SREBP1a and 1c. A binding site for lamin A was identified in the N-terminal transcription factor domain of SREBP1, between residues 227 and 487. The binding of lamin A to SREBP1 was noticeably reduced by FPLD mutations. Interestingly, one EDMD-AD mutation also interfered with the interaction between lamin A and SREBP1. Whilst the physiological relevance of this interaction has yet to be elucidated, these data raise the intriguing possibility that fat loss seen in laminopathies may be caused, at least in part, by reduced binding of the adipocyte differentiation factor SREBP1 to lamin A.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Lipodistrofia/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição , Células 3T3 , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ligação a DNA/genética , Fibroblastos , Regulação da Expressão Gênica , Células HeLa , Humanos , Lamina Tipo A , Laminas , Lipodistrofia/genética , Camundongos , Proteínas Nucleares/genética , Proteína de Ligação a Elemento Regulador de Esterol 1 , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...