Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585944

RESUMO

Objective: Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods: We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results: Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance: Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.

2.
medRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464132

RESUMO

Comorbidities are an increasing global health challenge. Accumulating evidence suggests overlapping genetic architectures underlying comorbid complex human traits and disorders. The bivariate causal mixture model (MiXeR) can quantify the polygenic overlap between complex phenotypes beyond global genetic correlation. Still, the pattern of genetic overlap between three distinct phenotypes, which is important to better characterize multimorbidities, has previously not been possible to quantify. Here, we present and validate the trivariate MiXeR tool, which disentangles the pattern of genetic overlap between three phenotypes using summary statistics from genome-wide association studies (GWAS). Our simulations show that the trivariate MiXeR can reliably reconstruct different patterns of genetic overlap. We further demonstrate how the tool can be used to estimate the proportions of genetic overlap between three phenotypes using real GWAS data, providing examples of complex patterns of genetic overlap between diverse human traits and diseases that could not be deduced from bivariate analyses. This contributes to a better understanding of the etiology of complex phenotypes and the nature of their relationship, which may aid in dissecting comorbidity patterns and their biological underpinnings.

4.
Transl Psychiatry ; 14(1): 16, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191519

RESUMO

Epigenetic modifications influenced by environmental exposures are molecular sources of phenotypic heterogeneity found in schizophrenia and bipolar disorder and may contribute to shared etiopathogenetic mechanisms of these two disorders. Newborns who experienced perinatal asphyxia have suffered reduced oxygen delivery to the brain around the time of birth, which increases the risk of later psychiatric diagnosis. This study aimed to investigate DNA methylation in blood cells for associations with a history of perinatal asphyxia, a neurologically harmful condition occurring within the biological environment of birth. We utilized prospective data from the Medical Birth Registry of Norway to identify incidents of perinatal asphyxia in 643 individuals with schizophrenia or bipolar disorder and 676 healthy controls. We performed an epigenome wide association study to distinguish differentially methylated positions associated with perinatal asphyxia. We found an interaction between methylation and exposure to perinatal asphyxia on case-control status, wherein having a history of perinatal asphyxia was associated with an increase of methylation in healthy controls and a decrease of methylation in patients on 4 regions of DNA important for brain development and function. The differentially methylated regions were observed in genes involved in oligodendrocyte survival and axonal myelination and functional recovery (LINGO3); assembly, maturation and maintenance of the brain (BLCAP;NNAT and NANOS2) and axonal transport processes and neural plasticity (SLC2A14). These findings are consistent with the notion that an opposite epigenetic response to perinatal asphyxia, in patients compared with controls, may contribute to molecular mechanisms of risk for schizophrenia and bipolar disorder.


Assuntos
Transtorno Bipolar , Transtornos Mentais , Recém-Nascido , Feminino , Gravidez , Humanos , Asfixia , Estudos Prospectivos , Transtorno Bipolar/genética , Epigênese Genética
5.
Drug Alcohol Depend ; 256: 111058, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244365

RESUMO

BACKGROUND: Opioid use disorder (OUD), a serious health burden worldwide, is associated with lower cognitive function. Recent studies have demonstrated a negative genetic correlation between OUD and general cognitive ability (COG), indicating a shared genetic basis. However, the specific genetic variants involved, and the underlying molecular mechanisms remain poorly understood. Here, we aimed to quantify and identify the genetic basis underlying OUD and COG. METHODS: We quantified the extent of genetic overlap between OUD and COG using a bivariate causal mixture model (MiXeR) and identified specific genetic loci applying conditional/conjunctional FDR. Finally, we investigated biological function and expression of implicated genes using available resources. RESULTS: We estimated that ~94% of OUD variants (4.8k out of 5.1k variants) also influence COG. We identified three novel OUD risk loci and one locus shared between OUD and COG. Loci identified implicated biological substrates in the basal ganglia. CONCLUSION: We provide new insights into the complex genetic risk architecture of OUD and its genetic relationship with COG.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Relacionados ao Uso de Opioides , Humanos , Cognição , Transtornos Relacionados ao Uso de Opioides/genética
6.
medRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37693403

RESUMO

Background: Anxiety disorders are prevalent and anxiety symptoms co-occur with many psychiatric disorders. We aimed to identify genomic risk loci associated with anxiety, characterize its genetic architecture, and genetic overlap with psychiatric disorders. Methods: We used the GWAS of anxiety symptoms, schizophrenia, bipolar disorder, major depression, and attention deficit hyperactivity disorder (ADHD). We employed MiXeR and LAVA to characterize the genetic architecture and genetic overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of genomic loci associated with anxiety and those shared with psychiatric disorders. Gene annotation and gene set analyses were conducted using OpenTargets and FUMA, respectively. Results: Anxiety was polygenic with 12.9k estimated genetic risk variants and overlapped extensively with psychiatric disorders (4.1-11.4k variants). MiXeR and LAVA revealed predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 114 novel loci for anxiety by conditioning on the psychiatric disorders. We also identified loci shared between anxiety and major depression (n = 47), bipolar disorder (n = 33), schizophrenia (n = 71), and ADHD (n = 20). Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways and differential tissue expression in more diverse tissues than those annotated to the shared loci. Conclusions: Anxiety is a highly polygenic phenotype with extensive genetic overlap with psychiatric disorders. These genetic overlaps enabled the identification of novel loci for anxiety. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified genetic loci implicate molecular pathways that may lead to potential drug targets.

7.
medRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014326

RESUMO

Cognitive impairment is a major determinant of functional outcomes in schizophrenia, and efforts to understand the biological basis of cognitive dysfunction in the disorder are ongoing. Previous studies have suggested genetic overlap between global cognitive ability and schizophrenia, but further work is needed to delineate the shared genetic architecture. Here, we apply genomic structural equation modelling to identify latent cognitive factors capturing genetic liabilities to 12 cognitive traits measured in the UK Biobank (UKB). We explore the overlap between latent cognitive factors, schizophrenia, and schizophrenia symptom dimensions using a complementary set of statistical approaches, applied to data from the latest schizophrenia genome-wide association study (Ncase = 53,386, Ncontrol = 77,258) and the Thematically Organised Psychosis study (Ncase = 306, Ncontrol = 1060). We identified three broad factors (visuo-spatial, verbal analytic and decision/reaction time) that underly the genetic correlations between the UKB cognitive tests. Global genetic correlations showed a significant but moderate negative genetic correlation between each cognitive factor and schizophrenia. Local genetic correlations implicated unique genomic regions underlying the overlap between schizophrenia and each cognitive factor. We found evidence of substantial polygenic overlap between each cognitive factor and schizophrenia but show that most loci shared between the latent cognitive factors and schizophrenia have unique patterns of association with the cognitive factors. Biological annotation of the shared loci implicated gene-sets related to neurodevelopment and neuronal function. Lastly, we find that the common genetic determinants of the latent cognitive factors are not predictive of schizophrenia symptom dimensions. Overall, these findings inform our understanding of cognitive function in schizophrenia by demonstrating important differences in the shared genetic architecture of schizophrenia and cognitive abilities.

8.
Transl Psychiatry ; 13(1): 343, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938559

RESUMO

The placenta plays a role in fetal brain development, and pregnancy and birth complications can be signs of placental dysfunction. Birth asphyxia is associated with smaller head size and higher risk of developing schizophrenia (SZ), but whether birth asphyxia and placental genomic risk factors associated with SZ are related and how they might impact brain development is unclear. 433 adult patients with SZ and 870 healthy controls were clinically evaluated and underwent brain magnetic resonance imaging. Pregnancy and birth information were obtained from the Medical Birth Registry of Norway. Polygenic risk scores (PRS) from the latest genome-wide association study in SZ were differentiated into placental PRS (PlacPRS) and non-placental PRS. If the interaction between PRSs and birth asphyxia on case-control status was significant, neonatal head circumference (nHC) and adult intracranial volume (ICV) were further evaluated with these variables using multiple regression. PlacPRS in individuals with a history of birth asphyxia was associated with a higher likelihood of being a patient with SZ (t = 2.10, p = 0.018). We found a significant interaction between PlacPRS and birth asphyxia on nHC in the whole sample (t = -2.43, p = 0.008), with higher placental PRS for SZ associated with lower nHC in those with birth asphyxia. This relationship was specific to males (t = -2.71, p = 0.005) and also found with their adult ICV (t = -1.97, p = 0.028). These findings suggest that placental pathophysiology and birth asphyxia may affect early and late trajectories of brain development, particularly in males with a higher vulnerability to SZ. This knowledge might lead to new strategies of treatment and prevention in SZ.


Assuntos
Placenta , Esquizofrenia , Gravidez , Adulto , Masculino , Recém-Nascido , Humanos , Feminino , Asfixia , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Genômica , Encéfalo/diagnóstico por imagem
9.
Mol Psychiatry ; 28(9): 4011-4019, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37864076

RESUMO

Reaction time variability (RTV), reflecting fluctuations in response time on cognitive tasks, has been proposed as an endophenotype for many neuropsychiatric disorders. There have been no large-scale genome-wide association studies (GWAS) of RTV and little is known about its genetic underpinnings. Here, we used data from the UK Biobank to conduct a GWAS of RTV in participants of white British ancestry (n = 404,302) as well as a trans-ancestry GWAS meta-analysis (n = 44,873) to assess replication. We found 161 genome-wide significant single nucleotide polymorphisms (SNPs) distributed across 7 genomic loci in our discovery GWAS. Functional annotation of the variants implicated genes involved in synaptic function and neural development. The SNP-based heritability (h2SNP) estimate for RTV was 3%. We investigated genetic correlations between RTV and selected neuropsychological traits using linkage disequilibrium score regression, and found significant correlations with several traits, including a positive correlation with mean reaction time and schizophrenia. Despite the high genetic correlation between RTV and mean reaction time, we demonstrate distinctions in the genetic underpinnings of these traits. Lastly, we assessed the predictive ability of a polygenic score (PGS) for RTV, calculated using PRSice and PRS-CS, and found that the RTV-PGS significantly predicted RTV in independent cohorts, but that the generalisability to other ancestry groups was poor. These results identify genetic underpinnings of RTV, and support the use of RTV as an endophenotype for neurological and psychiatric disorders.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Tempo de Reação/genética , Predisposição Genética para Doença , Esquizofrenia/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética
10.
Mol Psychiatry ; 28(11): 4924-4932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37759039

RESUMO

Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Substância Branca , Humanos , Estudo de Associação Genômica Ampla , Imagem de Tensor de Difusão/métodos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética
11.
Transl Psychiatry ; 13(1): 295, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709755

RESUMO

Autism spectrum disorder (ASD) is a highly heritable condition with a large variation in cognitive function. Here we investigated the shared genetic architecture between cognitive traits (intelligence (INT) and educational attainment (EDU)), and risk loci jointly associated with ASD and the cognitive traits. We analyzed data from genome-wide association studies (GWAS) of INT (n = 269,867), EDU (n = 766,345) and ASD (cases n = 18,381, controls n = 27,969). We used the bivariate causal mixture model (MiXeR) to estimate the total number of shared genetic variants, local analysis of co-variant annotation (LAVA) to estimate local genetic correlations, conditional false discovery rate (cond/conjFDR) to identify specific overlapping loci. The MiXeR analyses showed that 12.7k genetic variants are associated with ASD, of which 12.0k variants are shared with EDU, and 11.1k are shared with INT with both positive and negative relationships within overlapping variants. The majority (59-68%) of estimated shared loci have concordant effect directions, with a positive, albeit modest, genetic correlation between ASD and EDU (rg = 0.21, p = 2e-13) and INT (rg = 0.22, p = 4e-12). We discovered 43 loci jointly associated with ASD and cognitive traits (conjFDR<0.05), of which 27 were novel for ASD. Functional analysis revealed significant differential expression of candidate genes in the cerebellum and frontal cortex. To conclude, we quantified the genetic architecture shared between ASD and cognitive traits, demonstrated mixed effect directions, and identified the associated genetic loci and molecular pathways. The findings suggest that common genetic risk factors for ASD can underlie both better and worse cognitive functioning across the ASD spectrum, with different underlying biology.


Assuntos
Sucesso Acadêmico , Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Cerebelo , Cognição
12.
Psychoneuroendocrinology ; 157: 106368, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659117

RESUMO

C-reactive protein (CRP) tends to be elevated in individuals with psychiatric disorders. Recent findings have suggested a protective effect of the genetic liability to elevated CRP on schizophrenia risk and a causative effect on depression despite weak genetic correlations, while causal relationships with bipolar disorder were inconclusive. We investigated the shared genetic underpinnings of psychiatric disorders and variation in CRP levels. Genome-wide association studies for CRP (n = 575,531), bipolar disorder (n = 413,466), depression (n = 480,359), and schizophrenia (n = 130,644) were used in causal mixture models to compare CRP with psychiatric disorders based on polygenicity, discoverability, and genome-wide genetic overlap. The conjunctional false discovery rate method was used to identify specific shared genetic loci. Shared variants were mapped to putative causal genes, which were tested for overrepresentation among gene ontology gene-sets. CRP was six to ten times less polygenic (n = 1400 vs 8600-14,500 variants) and had a discoverability one to two orders of magnitude higher than psychiatric disorders. Most CRP-associated variants were overlapping with psychiatric disorders. We identified 401 genetic loci jointly associated with CRP and psychiatric disorders with mixed effect directions. Gene-set enrichment analyses identified predominantly CNS-related gene sets for CRP and each of depression and schizophrenia, and basic cellular processes for CRP and bipolar disorder. In conclusion, CRP has a markedly different genetic architecture to psychiatric disorders, but the majority of CRP associated variants are also implicated in psychiatric disorders. Shared genetic loci implicated CNS-related processes to a greater extent than immune processes, which may have implications for how we conceptualise causal relationships between CRP and psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtornos Mentais , Esquizofrenia , Humanos , Proteína C-Reativa/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Transtorno Bipolar/psicologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética
13.
Genome Med ; 15(1): 60, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528461

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) often co-occurs with psychiatric and gastrointestinal disorders. A recent genome-wide association study (GWAS) identified several genetic risk variants for IBS. However, most of the heritability remains unidentified, and the genetic overlap with psychiatric and somatic disorders is not quantified beyond genome-wide genetic correlations. Here, we characterize the genetic architecture of IBS, further, investigate its genetic overlap with psychiatric and gastrointestinal phenotypes, and identify novel genomic risk loci. METHODS: Using GWAS summary statistics of IBS (53,400 cases and 433,201 controls), and psychiatric and gastrointestinal phenotypes, we performed bivariate casual mixture model analysis to characterize the genetic architecture and genetic overlap between these phenotypes. We leveraged identified genetic overlap to boost the discovery of genomic loci associated with IBS, and to identify specific shared loci associated with both IBS and psychiatric and gastrointestinal phenotypes, using the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework. We used functional mapping and gene annotation (FUMA) for functional analyses. RESULTS: IBS was highly polygenic with 12k trait-influencing variants. We found extensive polygenic overlap between IBS and psychiatric disorders and to a lesser extent with gastrointestinal diseases. We identified 132 independent IBS-associated loci (condFDR < 0.05) by conditioning on psychiatric disorders (n = 127) and gastrointestinal diseases (n = 24). Using conjFDR, 70 unique loci were shared between IBS and psychiatric disorders. Functional analyses of shared loci revealed enrichment for biological pathways of the nervous and immune systems. Genetic correlations and shared loci between psychiatric disorders and IBS subtypes were different. CONCLUSIONS: We found extensive polygenic overlap of IBS and psychiatric and gastrointestinal phenotypes beyond what was revealed with genetic correlations. Leveraging the overlap, we discovered genetic loci associated with IBS which implicate a wide range of biological pathways beyond the gut-brain axis. Genetic differences may underlie the clinical subtype of IBS. These results increase our understanding of the pathophysiology of IBS which may form the basis for the development of individualized interventions.


Assuntos
Gastroenteropatias , Síndrome do Intestino Irritável , Transtornos Mentais , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/complicações , Eixo Encéfalo-Intestino , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
14.
medRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37503175

RESUMO

While neurological and psychiatric disorders have historically been considered to reflect distinct pathogenic entities, recent findings suggest shared pathobiological mechanisms. However, the extent to which these heritable disorders share genetic influences remains unclear. Here, we performed a comprehensive analysis of GWAS data, involving nearly 1 million cases across ten neurological diseases and ten psychiatric disorders, to compare their common genetic risk and biological underpinnings. Using complementary statistical tools, we demonstrate widespread genetic overlap across the disorders, even in the absence of genetic correlations. This indicates that a large set of common variants impact risk of multiple neurological and psychiatric disorders, but with divergent effect sizes. Furthermore, biological interrogation revealed a range of biological processes associated with neurological diseases, while psychiatric disorders consistently implicated neuronal biology. Altogether, the study indicates that neurological and psychiatric disorders share key etiological aspects, which has important implications for disease classification, precision medicine, and clinical practice.

15.
Neurobiol Dis ; 183: 106174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286172

RESUMO

BACKGROUND: Neuroinflammation is involved in the pathophysiology of Alzheimer's disease (AD), including immune-linked genetic variants and molecular pathways, microglia and astrocytes. Multiple Sclerosis (MS) is a chronic, immune-mediated disease with genetic and environmental risk factors and neuropathological features. There are clinical and pathobiological similarities between AD and MS. Here, we investigated shared genetic susceptibility between AD and MS to identify putative pathological mechanisms shared between neurodegeneration and the immune system. METHODS: We analysed GWAS data for late-onset AD (N cases = 64,549, N controls = 634,442) and MS (N cases = 14,802, N controls = 26,703). Gaussian causal mixture modelling (MiXeR) was applied to characterise the genetic architecture and overlap between AD and MS. Local genetic correlation was investigated with Local Analysis of [co]Variant Association (LAVA). The conjunctional false discovery rate (conjFDR) framework was used to identify the specific shared genetic loci, for which functional annotation was conducted with FUMA and Open Targets. RESULTS: MiXeR analysis showed comparable polygenicities for AD and MS (approximately 1800 trait-influencing variants) and genetic overlap with 20% of shared trait-influencing variants despite negligible genetic correlation (rg = 0.03), suggesting mixed directions of genetic effects across shared variants. conjFDR analysis identified 16 shared genetic loci, with 8 having concordant direction of effects in AD and MS. Annotated genes in shared loci were enriched in molecular signalling pathways involved in inflammation and the structural organisation of neurons. CONCLUSIONS: Despite low global genetic correlation, the current results provide evidence for polygenic overlap between AD and MS. The shared loci between AD and MS were enriched in pathways involved in inflammation and neurodegeneration, highlighting new opportunities for future investigation.


Assuntos
Doença de Alzheimer , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Sistema Imunitário , Loci Gênicos , Inflamação/genética , Polimorfismo de Nucleotídeo Único
16.
Nat Hum Behav ; 7(9): 1584-1600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365406

RESUMO

Personality and cognitive function are heritable mental traits whose genetic foundations may be distributed across interconnected brain functions. Previous studies have typically treated these complex mental traits as distinct constructs. We applied the 'pleiotropy-informed' multivariate omnibus statistical test to genome-wide association studies of 35 measures of neuroticism and cognitive function from the UK Biobank (n = 336,993). We identified 431 significantly associated genetic loci with evidence of abundant shared genetic associations, across personality and cognitive function domains. Functional characterization implicated genes with significant tissue-specific expression in all tested brain tissues and brain-specific gene sets. We conditioned independent genome-wide association studies of the Big 5 personality traits and cognitive function on our multivariate findings, boosting genetic discovery in other personality traits and improving polygenic prediction. These findings advance our understanding of the polygenic architecture of these complex mental traits, indicating a prominence of pleiotropic genetic effects across higher order domains of mental function such as personality and cognitive function.


Assuntos
Estudo de Associação Genômica Ampla , Personalidade , Humanos , Personalidade/genética , Fenótipo , Herança Multifatorial/genética , Cognição
17.
Psychiatry Res ; 325: 115217, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146461

RESUMO

Treatment resistant schizophrenia (TRS) is characterized by repeated treatment failure with antipsychotics. A recent genome-wide association study (GWAS) of TRS showed a polygenic architecture, but no significant loci were identified. Clozapine is shown to be the superior drug in terms of clinical effect in TRS; at the same time it has a serious side effect profile, including weight gain. Here, we sought to increase power for genetic discovery and improve polygenic prediction of TRS, by leveraging genetic overlap with Body Mass Index (BMI). We analysed GWAS summary statistics for TRS and BMI applying the conditional false discovery rate (cFDR) framework. We observed cross-trait polygenic enrichment for TRS conditioned on associations with BMI. Leveraging this cross-trait enrichment, we identified 2 novel loci for TRS at cFDR <0.01, suggesting a role of MAP2K1 and ZDBF2. Further, polygenic prediction based on the cFDR analysis explained more variance in TRS when compared to the standard TRS GWAS. These findings highlight putative molecular pathways which may distinguish TRS patients from treatment responsive patients. Moreover, these findings confirm that shared genetic mechanisms influence both TRS and BMI and provide new insights into the biological underpinnings of metabolic dysfunction and antipsychotic treatment.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia Resistente ao Tratamento , Índice de Massa Corporal , Estudo de Associação Genômica Ampla , Clozapina/farmacologia , Clozapina/uso terapêutico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico
18.
Schizophr Bull ; 49(6): 1654-1664, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37163672

RESUMO

Low vitamin D (vitD) levels have been consistently reported in schizophrenia (SCZ) suggesting a role in the etiopathology. However, little is known about the role of underlying shared genetic mechanisms. We applied a conditional/conjunctional false discovery rate approach (FDR) on large, nonoverlapping genome-wide association studies for SCZ (N cases = 53 386, N controls = 77 258) and vitD serum concentration (N = 417 580) to evaluate shared common genetic variants. The identified genomic loci were characterized using functional analyses and biological repositories. We observed cross-trait SNP enrichment in SCZ conditioned on vitD and vice versa, demonstrating shared genetic architecture. Applying the conjunctional FDR approach, we identified 72 loci jointly associated with SCZ and vitD at conjunctional FDR < 0.05. Among the 72 shared loci, 40 loci have not previously been reported for vitD, and 9 were novel for SCZ. Further, 64% had discordant effects on SCZ-risk and vitD levels. A mixture of shared variants with concordant and discordant effects with a predominance of discordant effects was in line with weak negative genetic correlation (rg = -0.085). Our results displayed shared genetic architecture between SCZ and vitD with mixed effect directions, suggesting overlapping biological pathways. Shared genetic variants with complex overlapping mechanisms may contribute to the coexistence of SCZ and vitD deficiency and influence the clinical picture.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla/métodos , Vitamina D/genética , Esquizofrenia/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Loci Gênicos
19.
Mol Psychiatry ; 28(7): 3111-3120, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37165155

RESUMO

The difference between chronological age and the apparent age of the brain estimated from brain imaging data-the brain age gap (BAG)-is widely considered a general indicator of brain health. Converging evidence supports that BAG is sensitive to an array of genetic and nongenetic traits and diseases, yet few studies have examined the genetic architecture and its corresponding causal relationships with common brain disorders. Here, we estimate BAG using state-of-the-art neural networks trained on brain scans from 53,542 individuals (age range 3-95 years). A genome-wide association analysis across 28,104 individuals (40-84 years) from the UK Biobank revealed eight independent genomic regions significantly associated with BAG (p < 5 × 10-8) implicating neurological, metabolic, and immunological pathways - among which seven are novel. No significant genetic correlations or causal relationships with BAG were found for Parkinson's disease, major depressive disorder, or schizophrenia, but two-sample Mendelian randomization indicated a causal influence of AD (p = 7.9 × 10-4) and bipolar disorder (p = 1.35 × 10-2) on BAG. These results emphasize the polygenic architecture of brain age and provide insights into the causal relationship between selected neurological and neuropsychiatric disorders and BAG.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Encéfalo , Transtorno Bipolar/genética
20.
JAMA Psychiatry ; 80(7): 738-742, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163253

RESUMO

Importance: Premenstrual disorders are heritable, clinically heterogenous, with a range of affective spectrum comorbidities. It is unclear whether genetic predispositions to affective spectrum disorders or other major psychiatric disorders are associated with symptoms of premenstrual disorders. Objective: To assesss whether symptoms of premenstrual disorders are associated with the genetic liability for major psychiatric disorders, as indexed by polygenic risk scores (PRSs). Design, Setting, and Participants: Women from the Norwegian Mother, Father and Child Cohort Study were included in this genetic association study. PRSs were used to determine whether genetic liability for major depression, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, and autism spectrum disorder were associated with the symptoms of premenstrual disorders, using the PRS for height as a somatic comparator. The sample was recruited across Norway between June 1999 and December 2008, and analyses were performed from July 1 to October 14, 2022. Main Outcomes and Measures: The symptoms of premenstrual disorders were assessed at recruitment at week 15 of pregnancy with self-reported severity of depression and irritability before menstruation. Logistic regression was applied to test for the association between the presence of premenstrual disorder symptoms and the PRSs for major psychiatric disorders. Results: The mean (SD) age of 56 725 women included in the study was 29.0 (4.6) years. Premenstrual disorder symptoms were present in 12 316 of 56 725 participants (21.7%). The symptoms of premenstrual disorders were associated with the PRSs for major depression (ß = 0.13; 95% CI, 0.11-0.15; P = 1.21 × 10-36), bipolar disorder (ß = 0.07; 95% CI, 0.05-0.09; P = 1.74 × 10-11), attention deficit/hyperactivity disorder (ß = 0.07; 95% CI, 0.04-0.09; P = 1.58 × 10-9), schizophrenia (ß = 0.11; 95% CI, 0.09-0.13; P = 7.61 × 10-25), and autism spectrum disorder (ß = 0.03; 95% CI, 0.01-0.05; P = .02) but not with the PRS for height. The findings were confirmed in a subsample of women without a history of psychiatric diagnosis. Conclusions: The results of this genetic association study show that genetic liability for both affective spectrum disorder and major psychiatric disorders was associated with symptoms of premenstrual disorders, indicating that premenstrual disorders have overlapping genetic foundations with major psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Criança , Humanos , Feminino , Adulto , Estudos de Coortes , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/genética , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/genética , Fatores de Risco , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Predisposição Genética para Doença , Herança Multifatorial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...