Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 22(3): 308-321, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015751

RESUMO

Myeloid-derived suppressor cell (MDSC) levels are elevated in patients with cancer and contribute to reduced efficacy of immune checkpoint therapy. MDSC express Bruton's tyrosine kinase (BTK) and BTK inhibition with ibrutinib, an FDA-approved irreversible inhibitor of BTK, leads to reduced MDSC expansion/function in mice and significantly improves the antitumor activity of anti-PD-1 antibody treatments. Single-cell RNA sequencing (scRNA-seq) was used to characterize the effect of ibrutinib on gene expression of fluorescence-activated cell sorting-enriched MDSC from patients with different cancer types [breast, melanoma, head and neck squamous cell cancer (HNSCC)]. Melanoma patient MDSC were treated in vitro for 4 hours with 5 µmol/L ibrutinib or DMSO, processed for scRNA-seq using the Chromium 10× Genomics platform, and analyzed via the Seurat v4 standard integrative workflow. Baseline gene expression of MDSC from patients with breast, melanoma, and HNSCC cancer revealed similarities among the top expressed genes. In vitro ibrutinib treatment of MDSC from patients with melanoma resulted in significant changes in gene expression. GBP1, IL-1ß, and CXCL8 were among the top downregulated genes whereas RGS2 and ABHD5 were among the top upregulated genes (P < 0.001). Double positive CD14+CD15+ MDSC and PMN-MDSC responded similarly to BTK inhibition and exhibited more pronounced gene changes compared with early MDSC and M-MDSC. Pathway analysis revealed significantly downregulated pathways including TREM1, nitric oxide signaling, and IL-6 signaling (P < 0.004). IMPLICATIONS: scRNA-seq revealed characteristic gene expression patterns for MDSC from different patients with cancer and BTK inhibition led to the downregulation of multiple genes and pathways important to MDSC function and migration.


Assuntos
Neoplasias de Cabeça e Pescoço , Melanoma , Células Supressoras Mieloides , Animais , Humanos , Camundongos , 1-Acilglicerol-3-Fosfato O-Aciltransferase , Tirosina Quinase da Agamaglobulinemia , Análise da Expressão Gênica de Célula Única , Carcinoma de Células Escamosas de Cabeça e Pescoço
2.
Cell Rep ; 42(5): 112528, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37209097

RESUMO

Altered hematopoietic stem cell (HSC) fate underlies primary blood disorders but microenvironmental factors controlling this are poorly understood. Genetically barcoded genome editing of synthetic target arrays for lineage tracing (GESTALT) zebrafish were used to screen for factors expressed by the sinusoidal vascular niche that alter the phylogenetic distribution of the HSC pool under native conditions. Dysregulated expression of protein kinase C delta (PKC-δ, encoded by prkcda) increases the number of HSC clones by up to 80% and expands polyclonal populations of immature neutrophil and erythroid precursors. PKC agonists such as cxcl8 augment HSC competition for residency within the niche and expand defined niche populations. CXCL8 induces association of PKC-δ with the focal adhesion complex, activating extracellular signal-regulated kinase (ERK) signaling and expression of niche factors in human endothelial cells. Our findings demonstrate the existence of reserve capacity within the niche that is controlled by CXCL8 and PKC and has significant impact on HSC phylogenetic and phenotypic fate.


Assuntos
Células Endoteliais , Peixe-Zebra , Animais , Humanos , Células Endoteliais/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Filogenia , Proteína Quinase C-delta/metabolismo , Nicho de Células-Tronco , Interleucina-8/metabolismo
3.
Nat Commun ; 14(1): 97, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609611

RESUMO

Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia
4.
Zebrafish ; 18(6): 346-353, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34542353

RESUMO

Setting nutritional standards for larval zebrafish (Danio rerio) that maximize growth, survival, and reproductive success is challenging. We evaluated the effects of different feeding regimens on larval zebrafish by comparing Gemma Micro 75 pelleted diet and live-type L rotifers (Brachionus plicatilis) in 3 feeding regimens starting at 9 days postfertilization (dpf): bolus feeding of live diet (BL), continuous feeding of live diet (CL), and pelleted diet (PD). Animals in the PD and CL groups were longer than the BL group at 4-5 weeks postfertilization. The PD group was also greater in body depth than both live diet groups. There was no significant difference in weight between the groups. There were also no significant differences in fecundity or sex ratios indicating that all feeding methods successfully promote growth of a useful breeding stock of fish. In addition, we quantified the equipment, consumable, and labor costs associated with these methods, and found that the PD regimen was superior to both live diet regimens. These data suggest that providing a high nutrient-density pelleted diet to larval and juvenile zebrafish is an effective means to increase early growth and to decrease cost and labor associated with nursery care.


Assuntos
Rotíferos , Peixe-Zebra , Ração Animal/análise , Animais , Dieta/veterinária , Larva
5.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32581043

RESUMO

BACKGROUND: A significant challenge to overcome in pancreatic ductal adenocarcinoma (PDAC) is the profound systemic immunosuppression that renders this disease non-responsive to immunotherapy. Our supporting data provide evidence that CD200, a regulator of myeloid cell activity, is expressed in the PDAC microenvironment. Additionally, myeloid-derived suppressor cells (MDSC) isolated from patients with PDAC express elevated levels of the CD200 receptor (CD200R). Thus, we hypothesize that CD200 expression in the PDAC microenvironment limits responses to immunotherapy by promoting expansion and activity of MDSC. METHODS: Immunofluorescent staining was used to determine expression of CD200 in murine and human PDAC tissue. Flow cytometry was utilized to test for CD200R expression by immune populations in patient blood samples. In vivo antibody blocking of CD200 was conducted in subcutaneous MT-5 tumor-bearing mice and in a genetically engineered PDAC model (KPC-Brca2 mice). Peripheral blood mononuclear cells (PBMC) from patients with PDAC were analyzed by single-cell RNA sequencing. MDSC expansion assays were completed using healthy donor PBMC stimulated with IL-6/GM-CSF in the presence of recombinant CD200 protein. RESULTS: We found expression of CD200 by human pancreatic cell lines (BxPC3, MiaPaca2, and PANC-1) as well as on primary epithelial pancreatic tumor cells and smooth muscle actin+ stromal cells. CD200R expression was found to be elevated on CD11b+CD33+HLA-DRlo/- MDSC immune populations from patients with PDAC (p=0.0106). Higher expression levels of CD200R were observed in CD15+ MDSC compared with CD14+ MDSC (p<0.001). In vivo studies demonstrated that CD200 antibody blockade limited tumor progression in MT-5 subcutaneous tumor-bearing and in KPC-Brca2 mice (p<0.05). The percentage of intratumoral MDSC was significantly reduced in anti-CD200 treated mice compared with controls. Additionally, in vivo blockade of CD200 can also significantly enhance the efficacy of PD-1 checkpoint antibodies compared with single antibody therapies (p<0.05). Single-cell RNA sequencing of PBMC from patients revealed that CD200R+ MDSC expressed genes involved in cytokine signaling and MDSC expansion. Further, in vitro cytokine-driven expansion and the suppressive activity of human MDSC was enhanced when cocultured with recombinant CD200 protein. CONCLUSIONS: These results indicate that CD200 expression in the PDAC microenvironment may regulate MDSC expansion and that targeting CD200 may enhance activity of checkpoint immunotherapy.


Assuntos
Antígenos CD/metabolismo , Carcinoma Ductal Pancreático/imunologia , Terapia de Imunossupressão , Leucócitos Mononucleares/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/imunologia , Animais , Antígenos CD/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Camundongos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
6.
Sci Rep ; 10(1): 2153, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034234

RESUMO

Hematopoietic stem cells (HSCs) are functionally and genetically diverse and this diversity decreases with age and disease. Numerous systems have been developed to quantify HSC diversity by genetic barcoding, but no framework has been established to empirically validate barcode sequences. Here we have developed an analytical framework, Selection of informative Amplicon Barcodes from Experimental Replicates (SABER), that identifies barcodes that are unique among a large set of experimental replicates. Amplicon barcodes were sequenced from the blood of 56 adult zebrafish divided into training and validation sets. Informative barcodes were identified and samples with a high fraction of informative barcodes were chosen by bootstrapping. There were 4.2 ± 1.8 barcoded HSC clones per sample in the training set and 3.5 ± 2.1 in the validation set (p = 0.3). SABER reproducibly quantifies functional HSCs and can accommodate a wide range of experimental group sizes. Future large-scale studies aiming to understand the mechanisms of HSC clonal evolution will benefit from this new approach to identifying informative amplicon barcodes.


Assuntos
Evolução Clonal , Técnicas de Genotipagem/métodos , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mutação , Algoritmos , Animais , Técnicas de Genotipagem/normas , Células-Tronco Hematopoéticas/citologia , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...