Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 240: 113597, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914384

RESUMO

Understanding light-matter interaction at the nanoscale by observation of fine details of electromagnetic fields is achieved by bringing nanoscale probes into the nearfield of light sources, capturing information that is lost in the far field. Although metal coated probes are often used for nearfield microscopy, they strongly perturb the electromagnetic fields under study. Here, through experiment and simulation, we detail light collection by uncoated fiber probes, which minimize such perturbation. Second-harmonic light from intensely-irradiated sub-wavelength sub-surface features was imaged to avoid otherwise dominating fundamental light background, yielding clear nearfield details through a 50 nm aperture uncoated probe with ∼23 nm optical resolution. Simulations show how a metallic coating distorts optical nearfields and limits optical coupling into the probe in comparison to an uncoated probe.

2.
Nat Nanotechnol ; 8(2): 95-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23353675

RESUMO

The lack of symmetry between electric and magnetic charges, a fundamental consequence of the small value of the fine-structure constant, is directly related to the weakness of magnetic effects in optical materials. Properly tailored plasmonic nanoclusters have been proposed recently to induce artificial optical magnetism based on the principle that magnetic effects are indistinguishable from specific forms of spatial dispersion of permittivity at optical frequencies. In a different context, plasmonic Fano resonances have generated a great deal of interest, particularly for use in sensing applications that benefit from sharp spectral features and extreme field localization. In the absence of natural magnetism, optical Fano resonances have so far been based on purely electric effects. In this Letter, we demonstrate that a subwavelength plasmonic metamolecule consisting of four closely spaced gold nanoparticles supports a strong magnetic response coupled to a broad electric resonance. Small structural asymmetries in the assembled nanoring enable the interaction between electric and magnetic modes, leading to the first observation of a magnetic-based Fano scattering resonance at optical frequencies. Our findings are supported by excellent agreement with simulations and analytical calculations, and represent an important step towards the quest for artificial magnetism and negative refractive index metamaterials at optical frequencies.

4.
Nanotechnology ; 22(11): 115301, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21301077

RESUMO

We demonstrate controlled manipulation of semiconductor and metallic nanoparticles (NPs) with 5-15 nm diameters and assemble these NPs into hybrid structures. The manipulation is accomplished under ambient environment using a commercial atomic force microscope (AFM). There are particular difficulties associated with manipulating NPs this small. In addition to spatial drift, the shape of an asymmetric AFM tip has to be taken into account in order to understand the intended and actual manipulation results. Furthermore, small NPs often attach to the tip via electrostatic interaction and modify the effective tip shape. We suggest a method for detaching the NPs by performing a pseudo-manipulation step. Finally, we show by example the ability to assemble these small NPs into prototypical hybrid nanostructures with well-defined composition and geometry.

5.
Nano Lett ; 11(3): 1049-54, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21280639

RESUMO

Using atomic force microscopy nanomanipulation, we position a single Au nanoparticle near a CdSe/ZnS quantum dot to construct a hybrid nanostructure with variable geometry. The coupling between the two particles is varied in a systematic and reversible manner. The photoluminescence lifetime and blinking of the same quantum dot are measured before and after assembly of the structure. In some hybrid structures, the total lifetime is reduced from about 30 ns to well below 1 ns. This dramatic change in lifetime is accompanied by the disappearance of blinking as the nonradiative energy transfer from the CdSe/ZnS quantum dot to the Au nanoparticle becomes the dominant decay channel. Both total lifetime and photoluminescence intensity changes are well described by simple analytical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA