Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Saudi J Biol Sci ; 31(3): 103922, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292670

RESUMO

Being the most expensive spice, saffron has great economic importance. This crop grows well in cold arid deserts. Salinity is one of the important limiting factors for the cultivation of this crop. However, the use of composted manured and co-composted biochar and fertilizers can play a role in attenuating the salinity stress on this crop. In this two-year field study, manures from three sources: sheep and goat (SG), cow and buffalo (FYM), and poultry (PM) farms, and their co-compost with slow-pyrolyzed wood-derived biochar (B) were used for saffron cultivation in slightly saline (electrical conductivity 1.95 dS m-1) and non-saline soils. Yield and concentration of antioxidants of stigma and bacterial diversity in the rhizosphere of this crop, under salinity and non-salinity conditions, were evaluated. Results revealed that in non-saline soil of first-year crops, all fertilizers decreased the yield of stigma than control by 15-49 % (P ≤ 0.05) but increased the concentration of carotenoids and total polyphenolics (P ≤ 0.05). In saline soil, no difference in yield was observed between treatments for the first-year crop; however, for the second-year crop, as compared to control, PM and FYM significantly increased yield by 41 % and 44 % respectively, whereas FYM also increased the concentration of total polyphenolics (P ≤ 0.05). The FYM fertilizer was found suitable for the yield and quality of saffron stigma for second-year crops in both soils (non-saline and saline). The observed OTUs, Chao1, Fischer, and ACE indexes based on 16 s rRNA metagenomic analysis revealed 2-4 times greater bacterial diversity in the rhizosphere soil of PM-B and SG-B treatments than in the control. Furthermore, 347 bacterial species were found in PM-B- or SG-B-amended soils absent in control treatments.

3.
Environ Sci Pollut Res Int ; 31(9): 14103-14122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270760

RESUMO

The utilization of nanobiochar in agricultural practices has garnered substantial interest owing to its promising potential. Its nano-size particles possess an enhanced ability to infiltrate plant cells, potentially instigating biochemical and physiological responses that augment stress tolerance. In our study, we aimed to assess the impact and extent of exogenously applied nanobiochar on the growth dynamics and antioxidative responses in Spinacia oleracea L. (spinach) plants subjected to salt stress (50 mM NaCl) and drought stress (maintained at 60% field capacity) compared with respective controls (0 mM NaCl and 100% field capacity). Following a 15-day exposure to stress conditions, nanobiochar solution (at concentrations of 0, 1, 3, and 5% w/v) was sprayed on spinach plants at weekly intervals (at 14, 21, and 28 days after sowing). The foliar application of nanobiochar markedly improved biomass, net assimilation rate, leaf area, and various other growth parameters under drought and salinity stress conditions. Notably, the application of 3% nanobiochar caused the most significant enhancement in growth traits, photosynthetic pigments, and nutrient content, indicating its efficiency in directly supplying nutrients to the foliage. Furthermore, under drought stress conditions, the application of 3% nanobiochar elicited a notable 62% increase in catalase activity, a two-fold rise in peroxidase activity, and a 128% increase in superoxide dismutase activity compared to the control (without nanobiochar). Additionally, nanobiochar application enhanced membrane stability, evidenced by reduced lipid peroxidation and electrolyte leakage. The foliar application of 3% nanobiochar was found as a promising strategy to significantly enhance spinach growth parameters, nutrient assimilation, and antioxidative defense mechanisms, particularly under conditions of drought and salinity stress.


Assuntos
Carvão Vegetal , Secas , Spinacia oleracea , Salinidade , Cloreto de Sódio , Antioxidantes
4.
Environ Sci Pollut Res Int ; 30(32): 78353-78366, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268811

RESUMO

Intercropping leguminous plant species with non-legume crops could be an effective strategy to maintain soil fertility. Additionally, the application of nano-Zn and Fe in trace amounts can substantially improve the bioavailable fraction of Zn and Fe. We studied the effect of foliar application of some nanomaterials on the agronomic, physio-biochemical attributes under a radish/pea intercropping system. The radish and pea were sprayed with different nanomaterials (Zn-Fe nanocomposite, nZnO, and nanobiochar) at 0 and 50 mg L-1 concentrations. Results indicated that the growth parameters of radish were higher in intercropping than in monocropping, while pea growth was inhibited in intercropping compared with monocropping. The shoot and root length, fresh weight, and dry matter of radish were increased by 28-50%, 60-70%, and 50-56% by intercropping than monocropping. Foliar spray of nano-materials further increased the growth traits of intercropped radish, such as shoot and root length, fresh weight, and dry matter, by 7-8%, 27-41%, and 50-60%, respectively. Similarly, pigments such as chlorophyll a, b, and carotenoids and the concentration of free amino acids, soluble sugars, flavonoids, and phenolics were differentially affected by intercropping and nanomaterials. The yield of the non-legume crop was increased by intercropping, whereas the legume crop exhibited significant growth inhibition due to competitive interactions. In conclusion, both intercropping and foliar spray of nanomaterials could be used as a combined approach to benefit plant growth and enhance the bioavailable Fe and Zn fractions of both crops.


Assuntos
Fabaceae , Nanoestruturas , Raphanus , Pisum sativum , Raphanus/metabolismo , Clorofila A/metabolismo , Fabaceae/metabolismo , Produtos Agrícolas , Verduras
5.
Plant Physiol Biochem ; 201: 107830, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352697

RESUMO

Soils deficient in essential micro-nutrients produce nutritionally starved crops that do not fulfill human nutritional requirements. This is getting serious since progressively increasing nutritional disorders are being diagnosed in residents of third-world countries like Pakistan. During this study, we synthesized a spinel nanocomposite (nMnZnFe2O4) and investigated its effectiveness in improving the micronutrient status and yield traits of rice. The nMnZnFe2O4 exhibited a cubic structure at the most prominent peak (311); a crystallite size of 44 nm, and an average grain size ranging from 7 to 9 µm. Foliar application of this nanocomposite was performed to 45 days old plants at concentrations 0, 10, 20, 30, 40, and 50 mg L-1, and data from rice plant parts (straw, husk, and grain) was recorded at maturity. Agronomic traits like the number of tillers, straw dry weight, root dry biomass, and grain yield per plant were improved by nMnZnFe2O4 application (+34.4% yield). Whereas some biochemical traits like amino acids, soluble sugars, flavonoids, and phenolics varied significantly in rice plant parts compared to the control. Above all, the maximum Zn and Fe concentrations in rice grain were recorded through foliar application of spinel nanocomposite (40 and 50 mg L-1). Therefore, results indicated that micronutrient supply in the form of a nanocomposite could positively regulate nutritional quality and rice grain yield.


Assuntos
Biofortificação , Oryza , Humanos , Zinco/metabolismo , Oryza/metabolismo , Grão Comestível/metabolismo , Micronutrientes/análise , Micronutrientes/metabolismo
6.
Chemosphere ; 296: 134055, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35196532

RESUMO

The phytoextraction potential of turnip and comparative effectiveness of three different organic ligands towards removal of lead (Pb) was investigated under field conditions. The 20 d old turnip seedlings were exposed to different Pb levels (0.0218, 2.42 and 4.83 mM Pb) spiked in the soil. After 10 d of Pb application, the soil was spiked with 2.4 mM concentration of different chelates viz. ethylenediaminetetraacetic acid (EDTA), citric acid (CA) and tartaric acid (TA). The 60 d old plants were harvested for growth analyses and determination of photosynthetic pigments, while Pb-concentration in different plant parts was determined from 60 and 90 d old plants. Yield attributes were recorded at the harvesting stage (HS, 90 d old plants). No suppression (rather a stimulation) in the root and shoot growth was evident upon Pb exposure whereas, a reduction in the chlorophyll content occurred at 4.83 mM Pb level. Soil amendment with TA improved chlorophyll contents irrespective of Pb levels while the effect of CA and EDTA was differential. A reduction in the root length while an increase in its diameter was recorded particularly at 4.83 mM Pb stress in 90 d old plants. The turnip retained maximum Pb-fraction in the roots at early growth stages, while EDTA application further increased its retention in root at 4.83 mM Pb regime. Nonetheless, only TA amendment promoted the transfer of Pb to shoot (∼30%) irrespective of Pb regimes. At the HS, application of both TA and EDTA caused substantial uptake of Pb in the root while the maximum shoot Pb-fraction was recorded again due to TA application, particularly at 4.83 mM Pb level. Above all, TA was identified as the most effective chelate that mobilized Pb from root to shoot leading to better growth possibly due to dilution effect, and thus enhanced phytoextraction efficiency in turnip.


Assuntos
Brassica napus , Poluentes do Solo , Biodegradação Ambiental , Clorofila , Ácido Cítrico , Ácido Edético/farmacologia , Chumbo , Solo , Tartaratos
7.
Front Plant Sci ; 13: 1098146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714742

RESUMO

Phosphate deprivation compromises plant productivity and modulates immunity. DAMP signalling by extracellular ATP (eATP) could be compromised under phosphate deprivation by the lowered production of cytosolic ATP and the need to salvage eATP as a nutritional phosphate source. Phosphate-starved roots of Arabidopsis can still sense eATP, indicating robustness in receptor function. However, the resultant cytosolic free Ca2+ signature is impaired, indicating modulation of downstream components. This perspective on DAMP signalling by extracellular ATP (eATP) addresses the salvage of eATP under phosphate deprivation and its promotion of immunity, how Ca2+ signals are generated and how the Ca2+ signalling pathway could be overcome to allow beneficial fungal root colonization to fulfill phosphate demands. Safe passage for an endophytic fungus allowing root colonization could be achieved by its down-regulation of the Ca2+ channels that act downstream of the eATP receptors and by also preventing ROS accumulation, thus further impairing DAMP signalling.

8.
Saudi J Biol Sci ; 28(12): 7561-7566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867060

RESUMO

The modulation of antimicrobial properties of nanomaterials can be achieved through various physical and chemical processes, which ultimately affect subsequent properties. In this study, the antibacterial potential of nano-silver was investigated at 0.5, 1.0, 2.0, and 3.0 g/L, and its differential temperature synthesis was achieved at 20, 50, and 70 °C using the solvent evaporation method. Nano-silver particles exhibited FCC (octahedral) crystalline structure with crystallite sizes ranging between 28 and 39 nm calculated using XRD analysis. Moreover, irregular and non-uniform surface morphology was evident from SEM micrographs. The UV-Vis absorbance spectrum of nano-silver exhibited wave maxima at 433 nm, while the FTIR analysis depicted different modes of vibration indicating the CH, OH, C≡C, C-Cl, and CH2 functional groups attached to the surface. Lastly, nano-silver caused prominent inhibition (12.5 mm) in the Escherichia coli growth, particularly at 70 °C synthesis temperature and 3.0 g/L dose. It is concluded that both the nano-silver crystal growth temperature and dose contributed substantially to bacterial growth inhibition linked with subsequent size, shape-dependent properties.

10.
Environ Sci Pollut Res Int ; 28(33): 45353-45363, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33864214

RESUMO

We studied the physio-biochemical involvement of exogenous signaling compounds, glutathione and putrescine (alone and in combination), on three contrasting genotypes (cvs. Shiralee, Rainbow, and Dunkled) of canola (Brassica napus L.) of plants exposed to chromium stress. Seeds were germinated in Cr-contaminated soil (0 and 50 µg/g Cr6+), and both signaling compounds were applied as a foliar spray to 20-day-old plants. Changes in root, stem, and leaf nitro-oxidative metabolism, endogenous GSH level, secondary metabolites, and mineral nutrients were investigated from 60-day-old plants. Exposure to Cr6+ increased stem GSH and NO concentrations in all cultivars. Maximum root Cr6+ bioaccumulation was recorded in cv. Rainbow and the least in cv. Shiralee. Also, Cr6+ stress decreased number and weight of seeds and pod length. Disturbances in root and shoot mineral profile were evident; however, its magnitude varied in all cultivars. The exogenous GSH improved root and shoot P, Fe, S, and Zn concentrations; however, the effect was cultivar specific. Leaf endogenous GSH was increased by exogenous GSH while NO levels remained unaffected. The GSH application also promoted shoot Cr6+ bioaccumulation while PUT application caused a recovery in seed number and seed weight. Both PUT and GSH differentially affected tissue-specific secondary metabolite profile. Overall, the exogenous GSH was much more effective in alleviating the Cr+6 toxicity in canola.


Assuntos
Brassica napus , Antioxidantes , Brassica napus/genética , Cromo , Glutationa , Minerais , Putrescina
11.
Ecotoxicol Environ Saf ; 211: 111901, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453640

RESUMO

The effects of fullerenol nanopriming (0, 10, 40, 80 and 120 nM concentration) on salt stressed-wheat (0 and 150 mM NaCl) were investigated under natural conditions. Salinity resulted in a shift in wheat growth pattern in the form of LAR (+ 40.9% increase) and RGR (+ 13.4% increase) while decreased NAR (- 31.7%). It also disturbed shoot and root biomass, ion uptake and reduced chlorophyll contents. Despite increase in enzyme activities, higher ROS generation (+ 48.1% O2- anion; and + 62.2% H2O2) and lipid peroxidation (+ 40.8% MDA) were detected in salt-stressed wheat plants. Possibly, the increases in enzyme activities were not up to the level to completely counteract the salinity induced oxidative stress. Nanopriming with fullerenol improved NAR (+ 8.77% to 23.2%), ROS metabolism and decreased indicators of oxidative stress. Hydropriming treatment also promoted NAR recovery by 21.9% than control plants. Compared to Na+ ions, improvements in shoot relative concentrations of K+, Ca2+ and P also recorded along with soluble sugars and amino acids, which improved osmotic balance. These biochemical modifications contributed to improvements in grain yield attributes (+11.8% to 18.3% in 100 grain-weight) than salinity stressed control. Hydropriming also contributed to a recovery in grain yield attributes by 12.6%. Above all, the harvested seeds from fullerenol treated plants also showed better germination and seedlings growth traits. Conclusively, we report non-toxic, growth-promoting effects of fullerenol nanoparticles on wheat crop and as a way forward; we suggest its exogenous application to recover crop productivity under saline environments.


Assuntos
Fulerenos/metabolismo , Estresse Oxidativo/fisiologia , Estresse Salino/fisiologia , Triticum/fisiologia , Antioxidantes/metabolismo , Clorofila/metabolismo , Germinação/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Íons/metabolismo , Peroxidação de Lipídeos , Salinidade , Estresse Salino/efeitos dos fármacos , Plântula/efeitos dos fármacos , Sementes/metabolismo , Sódio/metabolismo , Triticum/crescimento & desenvolvimento
12.
Naunyn Schmiedebergs Arch Pharmacol ; 393(12): 2453-2461, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32725284

RESUMO

This study reports an effort to synthesize biocompatible zinc oxide nanoparticles using sol-gel method and its influence on hematological and serological profile of Catla catla fish. Hexagonal wurtzite structure and crystallite size of ZnO-NPs was identified by using XRD in the range of 19 to 20 nm. Moreover, the irregular and non-uniform surface of these NPs was found using SEM. The different stretched and vibrational mode (ZnO, OH, CO, and H-O-H) was identified by using FTIR analysis. UV-visible spectroscopy confirmed absorbance of the blue shift in the range 340 nm. Bioassay of ZnO-NPs on Catla catla was performed and nano ZnO was given through intraperitoneal injections at 0, 25, 50, 75, and 100 µg/g body weight doses. Analysis of fish blood samples indicated an increase in WBCs and leukocytes while the differential effect on monocytes. On the other hand in response to varying ZnO concentrations, an increase in RBCs, hemoglobin, and HCT was evident. Serum analysis revealed an increase in urea concentration while a reduction in creatinine, ALT, and AST. In an overall assessment, nano-ZnO supplementation at 25 to 100 µg/g body weight differentially affected hematological and serum biochemical profile of thaila fish. Graphical abstract.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Óxido de Zinco/administração & dosagem , Óxido de Zinco/sangue , Animais , Contagem de Células Sanguíneas/métodos , Relação Dose-Resposta a Droga , Peixes , Injeções Intraperitoneais , Nanopartículas Metálicas/química , Óxido de Zinco/síntese química
13.
Physiol Mol Biol Plants ; 26(3): 475-487, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32205924

RESUMO

Earlier we reported that seed pre-treatment with PHF promoted early seedling growth and salinity tolerance in wheat. As a way forward, experiments were conducted to investigate whether and to what extent foliar spray of fullerol could influence growth and physio-biochemical responses in salt stressed wheat. In a control experiment, seeds were sown in sand filled pots (500 g) under control and 150 mM NaCl stress. After 15 days, foliar spray of fullerol at 0, 10, 40, 80 and 120 nM concentration was applied and the data for various morpho-biochemical attributes recorded after 2 weeks. Fullerol caused improvements in shoot growth attributes while had least effect on root growth traits. Increase in total chlorophyll while reduction in Car/Chl ratio was evident under salinity in response to fullerol spray. Only 40 and 80 nM spray treatments improved antioxidant activities and reduced H2O2 contents while MDA contents which increased due to salt stress, remained unaffected by foliar spray. Fullerol spray also improved sugars, proline and free amino acids under salinity. During second experiment under natural conditions, 60 day old plants grown in sand filled pots (10 kg) under 0 and 150 mM NaCl were foliar sprayed with selected concentrations (0, 40 and 80 nM) of fullerol. Salinity inhibited gas exchange and grain yield attributes while fullerol-sprayed plants exhibited recovery. Fullerol spray resulted in high root and shoot K+ and shoot Ca2+ contents. Also, increase in shoot and root P, while lesser shoot Na+ was recorded due to 80 nM spray under salt stress. Overall, 40 and 80 nM fullerol spray improved photosynthetic activity, osmolytes accumulation and altered tissue ion compartmentalization which contributed to improvement in grain yield attributes under salinity.

14.
Plants (Basel) ; 9(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079368

RESUMO

Jute (Corchorus capsularis) is a widely cultivated fibrous species with important physiological characteristics including biomass, a deep rooting system, and tolerance to metal stress. Furthermore, Corchorus species are indigenous leafy vegetables and show phytoremediation potential for different heavy metals. This species has been used for the phytoremediation of different toxic pollutants such as copper (Cu), cadmium (Cd), zinc (Zn), mercury (Hg) and lead (Pb). The current literature highlights the physiological and morphological characteristics of jute that are useful to achieve successful phytoremediation of different pollutants. The accumulation of these toxic heavy metals in agricultural regions initiates concerns regarding food safety and reductions in plant productivity and crop yield. We discuss some innovative approaches to increase jute phytoremediation using different chelating agents. There is a need to remediate soils contaminated with toxic substances, and phytoremediation is a cheap, effective, and in situ alternative, and jute can be used for this purpose.

15.
Compr Rev Food Sci Food Saf ; 17(5): 1325-1338, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33350163

RESUMO

Peanut is a multipurpose oil-seed legume, which offer benefits in many ways. Apart from the peanut plant's beneficial effects on soil quality, peanut seeds are nutritious and medicinally and economically important. In this review, insights into peanut origin and its domestication are provided. Peanut is rich in bioactive components, including phenolics, flavonoids, polyphenols, and resveratrol. In addition, the involvement of peanut in biological nitrogen fixation is highly significant. Recent reports regarding peanut responses and N2 fixation ability in response to abiotic stresses, including drought, salinity, heat stress, and iron deficiency on calcareous soils, have been incorporated. As a biotechnological note, recent advances in the development of transgenic peanut plants are also highlighted. In this context, regulation of transcriptional factors and gene transfer for the development of stress-tolerant peanut genotypes are of prime importance. Above all, this review signifies the importance of peanut cultivation and human consumption in view of the scenario of changing world climate in order to maintain food security.

16.
Front Plant Sci ; 8: 613, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491070

RESUMO

Over-production of reactive oxygen species (ROS) in plants under stress conditions is a common phenomenon. Plants tend to counter this problem through their ability to synthesize ROS neutralizing substances including non-enzymatic and enzymatic antioxidants. In this context, ascorbic acid (AsA) is one of the universal non-enzymatic antioxidants having substantial potential of not only scavenging ROS, but also modulating a number of fundamental functions in plants both under stress and non-stress conditions. In the present review, the role of AsA, its biosynthesis, and cross-talk with different hormones have been discussed comprehensively. Furthermore, the possible involvement of AsA-hormone crosstalk in the regulation of several key physiological and biochemical processes like seed germination, photosynthesis, floral induction, fruit expansion, ROS regulation and senescence has also been described. A simplified and schematic AsA biosynthetic pathway has been drawn, which reflects key intermediates involved therein. This could pave the way for future research to elucidate the modulation of plant AsA biosynthesis and subsequent responses to environmental stresses. Apart from discussing the role of different ascorbate peroxidase isoforms, the comparative role of two key enzymes, ascorbate peroxidase (APX) and ascorbate oxidase (AO) involved in AsA metabolism in plant cell apoplast is also discussed particularly focusing on oxidative stress perception and amplification. Limited progress has been made so far in terms of developing transgenics which could over-produce AsA. The prospects of generation of transgenics overexpressing AsA related genes and exogenous application of AsA have been discussed at length in the review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...