Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lasers Med Sci ; 12: e77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155162

RESUMO

Introduction: Wound healing can have a very important impact on the patients' quality of life. For its treatment, wound dressings have vital and effective uses. Indeed, the use of a proper wound dressing can improve the healing process and duration. Recently, wound dressings with unique properties have been prepared using natural hydrogels. In addition to the general wound characteristics, new generations of wound dressings, such as those lasting longer on the wound, can have specific properties such as transferring allogeneic cells to enhance the healing effect and speed up the healing process. The present study aimed to prepare a gelatin-based hydrogel and to characterize it for therapeutic purposes. Methods: In this experimental-laboratory study, a gelatin hydrogel was made using a microbial transglutaminase (mTG) enzyme. The prepared hydrogel was evaluated in terms of appearance, physical, and chemical properties. To investigate the biological properties of the hydrogel, cells were cultured on it and the toxicity of the hydrogel for the cells was investigated. The location of the cells on the hydrogel was imaged via an electron microscope. The absorption and reflectance characteristics of the hydrogel were recorded by optical spectroscopy. Data were collected and statistical analysis was performed. Results: The results showed that the mTG gelatin hydrogel had a uniform pore size and good physical, chemical, and mechanical properties for use in wound healing. Cell experiments showed evident cell proliferation and high viability. The results also revealed that the cells grew vigorously and adhered tightly to the hydrogel. Conclusion: The preparation of a gelatin hydrogel under GMP conditions can be considered in the healing of diabetic wounds and burns.

2.
Int J Pharm ; 559: 1-12, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30664992

RESUMO

Passing the Blood-Brain-Barrier (BBB) is a challenging aspect in nanomedicine. Utilizing surfactant particles is reported to be a potent strategy for easier BBB penetration. On the other hand, loading different functional molecules on a single particle is therapeutically and economically beneficial. In this study, multifunctional amphiphilic Janus nanoparticles have been prepared on the basis of superparamagnetic iron oxide nanoparticles. This Janus platform is armed with folic acid targeting agent and Doxorubicin (DOX) drug that have been conjugated on different sides of the nanoparticles. DOX has been conjugated via imine bond that makes these particles pH sensitive. Chemo-physical characters, in-vitro drug release pattern and toxicity of nanoparticles on rat C6 glioma cell line were studied that confirmed the preparation and pH-dependent behavior of nanoparticles. Microscopy observations showed the Janus morphology of nanoparticles and their cell penetration behavior. Prepared Janus nanoparticle can be utilized as a multifunctional nanomedicine platform for brain cancer treatment.


Assuntos
Compostos Férricos/química , Nanopartículas/química , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Ácido Fólico/química , Glioma/tratamento farmacológico , Glioma/metabolismo , Nanopartículas de Magnetita , Nanomedicina/métodos , Nanopartículas/metabolismo , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA