Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 895703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721191

RESUMO

The cytoplasmic actin isoforms (ß- and γ-actins) contribute greatly to cellular processes such as cel-cell and cell-matrix interactions, as well as cell polarization, motility and division. Distinct isoforms modulations are linked to serious pathologies, so investigations of underlying mechanisms would be of major relevance not only for fundamental research but also for clinical applications. Therefore, the study of the relevant mechanisms of change in the isoform's balance is important for basic research and for clinical studies. The disruption of actin cytoskeleton and intercellular adhesions contribute to the neoplastic transformation, as it is important for the tumor growth, invasiveness and metastasis. Cytoplasmic actins display the functional diversity: ß-actin is responsible for contractility, whereas γ-actin participates in the submembrane flexible cortex organization and direction cell motility. The involvement of ß- and γ-actin in cell architecture, motility, division, and adhesion junctions in normal cells is not equivalent, and the major question was following: whether isoform ratio and the distribution in the cell corresponds to pathological function. Significant data were obtained in the study of tumor and normal cells in culture, as well as on clinical material of human tissues, and via selective regulation of ß- and γ-actin's expression. Investigation of the actins' diversity and function in cancers may help to choose the benefit treatment strategies, and to design new therapies.

2.
Biochemistry (Mosc) ; 85(9): 1072-1063, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33050852

RESUMO

We investigated distribution and functions of beta- and gamma-cytoplasmic actins (CYAs) at different stages of non-neoplastic epithelial cell division using laser scanning microscopy (LSM). Here, we demonstrated that beta- and gamma-CYAs are spatially segregated in the early prophase, anaphase, telophase, and cytokinesis. Small interfering RNA (siRNA) experiments revealed that in both beta-CYA- and gamma-CYA-depleted cells, the number of cells was significantly reduced compared with the siRNA controls. Beta-CYA depletion resulted in an enlargement of the cell area in metaphase and high percentage of polynuclear cells compared with the siRNA control, indicating a potential failure of cytokinesis. Gamma-CYA depletion resulted in a reduced percentage of mitotic cells. We also observed the interdependence between the actin isoforms and the microtubule system in mitosis: (i) a decrease in the gamma-CYA led to impaired mitotic spindle organization; (ii) suppression of tubulin polymerization caused impaired beta-CYA reorganization, as incubation with colcemid blocked the transfer of short beta-actin polymers from the basal to the cortical compartment. We conclude that both actin isoforms are essential for proper cell division, but each isoform has its own specific functional role in this process.


Assuntos
Actinas/metabolismo , Citoplasma/metabolismo , Queratinócitos/metabolismo , Microtúbulos/metabolismo , Mitose , Células Cultivadas , Citocinese , Humanos , Queratinócitos/citologia , Isoformas de Proteínas
3.
Biochemistry (Mosc) ; 84(6): 583-592, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31238858

RESUMO

Actin plays an important role in cellular adhesion, muscle and non-muscle contractility, migration, polarization, mitosis, and meiosis. Investigation of specific mechanisms underlying these processes is essential not only for fundamental research but also for clinical applications, since modulations of actin isoforms are directly or indirectly correlate with severe pathologies. In this review we summarize the isoform-specific functions of actin associated with adhesion structures, motility and division of normal and tumor cells; alterations of the expression and structural organization of actin isoforms in normal and tumor cells. Selective regulation of cytoplasmic ß- or γ-actin expression determines functional diversity between isoforms: ß-actin plays the predominant role in contraction and intercellular adhesion, and γ-actin is responsible for the cellular plasticity and motility. Similar data were obtained in different epithelial and mesenchymal neoplastic cell cultures, as well as in immunomorphological comparison of normal human tissues with tumor analogues. Reorganization of the actin cytoskeleton and cell-cell contacts is essential for proliferation control and acquisition of invasiveness in epithelial tumors.


Assuntos
Actinas/fisiologia , Isoformas de Proteínas/fisiologia , Actinas/química , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Transformação Celular Neoplásica , Citoplasma/metabolismo , Citosol/metabolismo , Humanos , Mamíferos , Isoformas de Proteínas/química , Relação Estrutura-Atividade
4.
Biochemistry (Mosc) ; 77(11): 1266-76, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23240564

RESUMO

Malignant cell transformation requires changes in the ability of cells to migrate. The disruption of actin cytoskeleton and intercellular adhesions is an important component of the acquisition of invasive properties in epithelial malignancies. The invasive ability of carcinoma cells is associated with reduced expression of adhesion junction molecules and increased expression of mesenchymal markers, frequently referred to as epithelial-to-mesenchymal transition (EMT). Standard features of the EMT program in cancer cells include fibroblastic phenotype, downregulation of the epithelial marker E-cadherin, induction of Snail-family transcription factors, as well as expression of mesenchymal proteins. We compared the epithelial and mesenchymal marker profiles of nonmalignant HaCaT keratinocytes to the corresponding profiles of cervical carcinoma cell lines C-33A, SiHa, and CaSki. The characteristics of the EMT appeared to be more developed in SiHa and CaSki cervical cancer cells. Further activation of the EMT program in cancer cells was induced by epidermal growth factor. Decreased epithelial marker E-cadherin in CaSki cells was accompanied by increased mesenchymal markers N-cadherin and vimentin. Downregulated expression of E-cadherin in SiHa and CaSki cells was associated with increased expression of Snail transcription factor. Our goal was to study actin reorganization in the EMT process in cell cultures and in tissue. We found that ß-cytoplasmic actin structures are disorganized in the cervical cancer cells. The expression of ß-cytoplasmic actin was downregulated.


Assuntos
Actinas/metabolismo , Junções Aderentes/metabolismo , Citoesqueleto de Actina , Actinas/química , Junções Aderentes/efeitos dos fármacos , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Fator de Crescimento Epidérmico/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Vimentina/metabolismo
5.
Biochemistry (Mosc) ; 77(9): 983-95, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23157257

RESUMO

Novel mitochondria-targeted compounds composed entirely of natural constituents have been synthesized and tested in model lipid membranes, in isolated mitochondria, and in living human cells in culture. Berberine and palmatine, penetrating cations of plant origin, were conjugated by nonyloxycarbonylmethyl residue with the plant electron carrier and antioxidant plastoquinone. These conjugates (SkQBerb, SkQPalm) and their analogs lacking the plastoquinol moiety (C10Berb and C10Palm) penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria in living human cells in culture. Reduced forms of SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In isolated mitochondria and in living cells, the berberine and palmatine moieties were not reduced, so antioxidant activity belonged exclusively to the plastoquinol moiety. In human fibroblasts, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. At higher concentrations, conjugates of berberine and palmatine induced proton transport mediated by free fatty acids both in model and in mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. As an example of application of the novel mitochondria-targeted antioxidants SkQBerb and SkQPalm to studies of signal transduction, we discuss induction of cell cycle arrest, differentiation, and morphological normalization of some tumor cells. We suggest that production of oxygen radicals in mitochondria is necessary for growth factors-MAP-kinase signaling, which supports proliferation and transformed phenotype.


Assuntos
Alcaloides de Berberina/química , Alcaloides de Berberina/metabolismo , Berberina/química , Berberina/metabolismo , Mitocôndrias/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Plastoquinona/farmacologia
6.
Biochemistry (Mosc) ; 73(12): 1300-16, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19120016

RESUMO

It was proposed that increased level of mitochondrial reactive oxygen species (ROS), mediating execution of the aging program of an organism, could also be critical for neoplastic transformation and tumorigenesis. This proposal was addressed using new mitochondria-targeted antioxidant SkQ1 (10-(6'-plastoquinonyl) decyltriphenylphosphonium) that scavenges ROS in mitochondria at nanomolar concentrations. We found that diet supplementation with SkQ1 (5 nmol/kg per day) suppressed spontaneous development of tumors (predominantly lymphomas) in p53(-/-) mice. The same dose of SkQ1 inhibited the growth of human colon carcinoma HCT116/p53(-/-) xenografts in athymic mice. Growth of tumor xenografts of human HPV-16-associated cervical carcinoma SiHa was affected by SkQ1 only slightly, but survival of tumor-bearing animals was increased. It was also shown that SkQ1 inhibited the tumor cell proliferation, which was demonstrated for HCT116 p53(-/-) and SiHa cells in culture. Moreover, SkQ1 induced differentiation of various tumor cells in vitro. Coordinated SkQ1-initiated changes in cell shape, cytoskeleton organization, and E-cadherin-positive intercellular contacts were observed in epithelial tumor cells. In Ras- and SV40-transformed fibroblasts, SkQ1 was found to initiate reversal of morphological transformation of a malignant type, restoring actin stress fibers and focal adhesion contacts. SkQ1 suppressed angiogenesis in Matrigel implants, indicating that mitochondrial ROS could be important for tumor angiogenesis. This effect, however, was less pronounced in HCT116/p53(-/-) tumor xenografts. We have also shown that SkQ1 and related positively charged antioxidants are substrates of the P-glycoprotein multidrug resistance pump. The lower anti-tumor effect and decreased intracellular accumulation of SkQ1, found in the case of HCT116 xenografts bearing mutant forms of p53, could be related to a higher level of P-glycoprotein. The effects of traditional antioxidant N-acetyl-L-cysteine (NAC) on tumor growth and tumor cell phenotype were similar to the effects of SkQ1 but more than 1,000,000 times higher doses of NAC than those of SkQ1 were required. Extremely high efficiency of SkQ1, related to its accumulation in the mitochondrial membrane, indicates that mitochondrial ROS production is critical for tumorigenesis at least in some animal models.


Assuntos
Envelhecimento , Mitocôndrias/metabolismo , Neoplasias/fisiopatologia , Plastoquinona/análogos & derivados , Proteína Supressora de Tumor p53/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Mitocôndrias/química , Mitocôndrias/efeitos dos fármacos , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Plastoquinona/metabolismo , Plastoquinona/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...