Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 252: 121248, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335752

RESUMO

This review explores the potential and challenges of combining electrochemical, especially electrocoagulation (EC) process, with various - wastewater treatment methods such as membranes, chemical treatments, biological methods, and oxidation processes to enhance pollutant removal and reduce costs. It emphasizes the advantages of using electrochemical processes as a pretreatment step, including increased volume and improved quality of permeate water, mitigation of membrane fouling, and lower environmental impact. Pilot-scale studies are discussed to validate the effectiveness of combined EC processes, particularly for industrial wastewater. Factors such as electrode materials, coating materials, and the integration of a third process are discussed as potential avenues for improving the environmental sustainability and cost-effectiveness of the combined EC processes. This review also discusses factors for improvement and explores the EC process combined with Advanced Oxidation Processes (AOP). The conclusion highlights the need for combined EC processes, which include reducing electrode consumption, evaluating energy efficiency, and conducting pilot-scale investigations under continuous flow conditions. Furthermore, it emphasizes future research on electrode materials and technology commercialization. Overall, this review underscores the importance of combined EC processes in meeting the demand for clean water resources and emphasizes the need for further optimization and implementation in industrial applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Eletrocoagulação , Eletrodos , Purificação da Água/métodos
2.
J Mater Chem B ; 11(27): 6201-6224, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37306212

RESUMO

Optically transparent wound dressings offer a range of potential applications in biomedical fields, as they allow for the monitoring of wound-healing progress without having to replace the dressing. These dressings must be impermeable to water and bacteria, yet permeable to moisture vapor and atmospheric gases in order to maintain a moist environment at the wound site. This review article provides a comprehensive overview of the types of wound dressings, novel wound-dressing materials, advanced fabrication techniques for transparent wound-dressing materials, and the key features and applications of transparent dressings for the healing process, as well as how they can improve healing outcomes. This review mainly focuses on presenting specifications of transparent polymeric wound-dressing materials, such as transparent electrospun nanofibers, transparent crosslinked hydrogels, and transparent composite films/membranes. Due to the advanced properties of electrospun nanofibers, such as large surface area, efficient incorporation of antibacterial molecules, a structure similar to the extracellular matrix, and high mechanical stability, they are often used in wound-dressing applications. We also highlight hydrogels or films for wound-healing applications, and their promotion of the healing process, provision of a moist environment and pain relief through cooling and high-water content, excellent biocompatibility, and bio-biodegradability. But as hydrogels or films fabricated with a single component have low mechanical strength and stability, recent trends have offered composite or hybrid materials to achieve typical wound-dressing requirements. Advanced wound dressings with transparency, high mechanical stability, and antimicrobial functionality are becoming a popular research avenue in the wound-dressing research field. Finally, the developmental prospects of new transparent wound-dressing materials for future research are presented.


Assuntos
Anti-Infecciosos , Cicatrização , Bandagens/microbiologia , Água , Hidrogéis
3.
Membranes (Basel) ; 12(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448352

RESUMO

Fabrication of highly efficient oil/water separation membranes is attractive and challenging work for the actual application of the membranes in the treatment of oily wastewater and cleaning up oil spills/oil leakage accidents. In this study, hydrophilic poly(ethylene-co-polyvinyl alcohol) (EVOH) nanofiber membranes were made using an electrospinning technique for oil/water separation. The as-prepared EVOH electrospun nanofiber membranes (ENMs) exhibited a super-hydrophilic property (water contact angle 33.74°) without further treatment. As prepared, ENMs can provide continuous separation of surfactant-free and surfactant-stabilized water-in-oil emulsions with high efficiency (i.e., flux 8200 L m−2 h−1 (LMH), separation efficiency: >99.9%). In addition, their high stability (i.e., reusable, mechanically robust) would broaden the conditions under which they can be employed in the real field oil/water separation applications. Various characterization techniques (including morphology investigation, pore size, porosity, mechanical properties, and performance test) for gravity-driven oil/water separation were employed to evaluate the newly prepared EVOH ENMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA