Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559181

RESUMO

Rizatriptan (RZT) is an efficient anti-migraine drug which belongs to the class of selective 5 HT (1B/1D) serotonin receptor agonists. Nevertheless, RZT elicits several adverse effects and RZT nasal sprays have a limited half-life, requiring repeated doses that could cause patient noncompliance or harm to the nasopharynx and cilia. The current research aimed to develop orally disintegrating films (ODFs) of RZT employing maltodextrin (MTX) and pullulan (PUL) as film-forming polymers, as well as propylene glycol (PG) as a plasticizer. The ODFs were prepared by solvent casting method (SCM). The technique was optimized using Box-Behnken design (BBD), contemplating the ratios of PUL: MTX and different levels of PG (%) as factor variables. The influence of these factors was systematically analyzed on the selected dependent variables, including film thickness, disintegration time (D-time), folding endurance (FE), tensile strength (TS), percent elongation (%E), moisture content (%), and water uptake (%). In addition, the surface morphology, solid state analysis, drug content uniformity (%), drug release (%), and pH of the RZT-ODFs were also studied. The results demonstrated a satisfactory stable RZT-ODFs formulation that exhibited surface homogeneity and amorphous RZT in films with no discernible interactions between the model drug and polymeric materials. The optimized film showed a rapid D-time of 16 s and remarkable mechanical features. The in vitro dissolution kinetics showed that 100% RZT was released from optimized film compared to 61% RZT released from conventional RZT formulation in the initial 5 min. An animal pharmacokinetic (PK) investigation revealed that RZT-ODFs had a shorter time to achieve peak plasma concentration (Tmax), a higher maximum plasma concentration (Cmax), and area under the curve (AUC0-t) than traditional oral mini capsules. These findings proposed a progressive approach for developing anti-migraine drugs that could be useful in reducing the complications of dysphagia in geriatric and pediatric sufferers.

2.
Materials (Basel) ; 15(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629620

RESUMO

Migraine is a neurological disorder characterized by severe headaches, visual aversions, auditory, and olfactory disorders, accompanied by nausea and vomiting. Zolmitriptan (ZMT®) is a potent 5HT1B/1D serotonin receptor agonist frequently used for the treatment of migraine. It has erratic absorption from the gastrointestinal tract (GIT), but its oral bioavailability is low (40-45%) due to the hepatic metabolism. This makes it an ideal candidate for oral fast dissolving formulations. Hence, the current study was undertaken to design and develop oral fast-dissolving films (OFDFs) containing ZMT for migraine treatment. The OFDFs were formulated by the solvent casting method (SCM) using Pullulan (PU) and maltodextrin (MDX) as film-forming agents and propylene glycol (PG) as a plasticizer. The strategy was designed using Box-Behnken experimental design considering the proportion of PU:MDX and percentage of PG as independent variables. The effectiveness of the OFDF's was measured based on the following responses: drug release at five min, disintegration time (D-time), and tensile strength (TS). The influence of formulation factors, including percent elongation (%E), thickness, water content, moisture absorption, and folding endurance on ZMT-OFDFs, were also studied. The results showed a successful fabrication of stable ZMT-OFDFs, with surface uniformity and amorphous shape of ZMT in fabricated films. The optimized formulation showed a remarkable rapid dissolution, over 90% within the first 5 min, a fast D-time of 18 s, and excellent mechanical characteristics. Improved maximum plasma concentration (C max) and area under the curve (AUC 0-t) in animals (rats) treated with ZMT-OFDFs compared to those treated with an intra-gastric (i-g) suspension of ZMT were also observed. Copolymer OFDFs with ZMT is an exciting proposition with great potential for the treatment of migraine headache. This study offers a promising strategy for developing ZMT-OFDFs using SCM. ZMT-OFDFs showed remarkable rapid dissolution and fast D-time, which might endeavor ZMT-OFDFs as an auspicious alternative approach to improve patient compliance and shorten the onset time of ZMT in migraine treatment.

3.
Pharmaceutics ; 13(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799983

RESUMO

Diabetic wound infections caused by conventional antibiotic-resistant Staphylococcus aureus strains are fast emerging, leading to life-threatening situations (e.g., high costs, morbidity, and mortality) associated with delayed healing and chronic inflammation. Electrospinning is one of the most widely used techniques for the fabrication of nanofibers (NFs), induced by a high voltage applied to a drug-loaded polymer solution. Particular attention is given to electrospun NFs for pharmaceutical applications (e.g., original drug delivery systems) and tissue regeneration (e.g., as tissue scaffolds). However, there is a paucity of reports related to their application in diabetic wound infections. Therefore, we prepared eco-friendly, biodegradable, low-immunogenic, and biocompatible gelatin (GEL)/polyvinyl alcohol (PVA) electrospun NFs (BNFs), in which we loaded the broad-spectrum antibiotic cephradine (Ceph). The resulting drug-loaded NFs (LNFs) were characterized physically using ultraviolet-visible (UV-Vis) spectrophotometry (for drug loading capacity (LC), drug encapsulation efficiency (EE), and drug release kinetics determination), thermogravimetric analysis (TGA) (for thermostability evaluation), scanning electron microscopy (SEM) (for surface morphology analysis), and Fourier-transform infrared spectroscopy (FTIR) (for functional group identification). LNFs were further characterized biologically by in-vitro assessment of their potency against S. aureus clinical strains (N = 16) using the Kirby-Bauer test and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, by ex-vivo assessment to evaluate their cytotoxicity against primary human epidermal keratinocytes using MTT assay, and by in-vivo assessment to estimate their diabetic chronic wound-healing efficiency using NcZ10 diabetic/obese mice (N = 18). Thin and uniform NFs with a smooth surface and standard size (<400 nm) were observed by SEM at the optimized 5:5 (GEL:PVA) volumetric ratio. FTIR analyses confirmed the drug loading into BNFs. Compared to free Ceph, LNFs were significantly more thermostable and exhibited sustained/controlled Ceph release. LNFs also exerted a significantly stronger antibacterial activity both in-vitro and in-vivo. LNFs were significantly safer and more efficient for bacterial clearance-induced faster chronic wound healing. LNF-based therapy could be employed as a valuable dressing material to heal S. aureus-induced chronic wounds in diabetic subjects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...