Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(1): 32, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270625

RESUMO

KEY MESSAGE: Mapping and fine mapping of bean anthracnose resistance genes is a continuous process. We report fine mapping of anthracnose resistance gene Co-18 which is the first anthracnose gene mapped to Pv10. The discovery of resistance gene is a major gain in the bean anthracnose pathosystem research. Among the Indian common bean landraces, KRC-5 exhibit high levels of resistance to the bean anthracnose pathogen Colletotrichum lindemuthianum. To precisely map the anthracnose resistance gene, we used a Recombinant Inbred Line (F2:9 RIL) population (KRC-5 × Jawala). The inheritance test revealed that KRC-5 carries a dominant resistance gene temporarily designated as Co-18. We discovered two RAPD markers linked to Co-18 among 287 RAPD markers. These RAPD markers were eventually developed into SCARs (Sc-OPR15 and Sc-OPF6) and flank Co-18 on chromosome Pv10 at a distance of 5.3 and 4.2 cM, respectively. At 4.0-4.1 Mb on Pv10, we detected a SNP (single-nucleotide polymorphism) signal. We synthesized 58 SSRs and 83 InDels from a pool of 135 SSRs and 1134 InDels, respectively. Five SSRs, four InDels, and two SCARs were used to generate the high-density linkage map, which led to the identification of two SSRs (SSR24 and SSR36) that are tightly linked to Co-18. These two SSRs flank the Co-18 to 178 kb genomic region with 13 candidate genes including five NLR (nucleotide-binding and leucine-rich repeat) genes. The closely linked markers SSR24 and SSR36 will be used in cloning and pyramiding of the Co-18 gene with other R genes to develop durable resistant bean varieties.


Assuntos
Phaseolus , Phaseolus/genética , Cicatriz , Técnica de Amplificação ao Acaso de DNA Polimórfico , Mapeamento Cromossômico , Genes Dominantes
2.
Biomed Chromatogr ; 38(1): e5756, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750442

RESUMO

In this study, an analytical method was developed and validated for the assessment of pesticide residues in commonly consumed vegetables and fruits. Fresh samples of apple, green peas, tomatoes, and cucumbers were processed and subjected to analysis using a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction technique. Subsequently, quantification of pesticide residues was conducted utilizing gas chromatography (GC)-electron capture detector. Extraction and cleanup parameters were meticulously optimized, resulting in a modification of the original QuEChERS method. This modification aimed to reduce solvent consumption, making the study more environmentally friendly. The developed method was validated in terms of selectivity, specificity, linearity, precision, and accuracy by following the SANTE guidelines. Calibration curves showed good linearity (r > 0.99) within the test range. Precision was evaluated by intra- and inter-day experiments with an acceptable relative standard deviation (<20.0%). Recovery was assessed at the limit of quantification level and was observed to fall within the range of 70%-120%, with relative standard deviations below 5.45%. The validated method presented here can be applied to analyze pesticide residues in various other vegetables, fruits, and cereals. It is essential for ongoing monitoring of pesticide residues to ensure public safety.


Assuntos
Resíduos de Praguicidas , Resíduos de Praguicidas/análise , Verduras/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Frutas/química , Cromatografia Gasosa/métodos
3.
Biomed Chromatogr ; 37(10): e5705, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525473

RESUMO

The present study on "acephate persistence on green pea" was conducted in SKUAST-Kashmir. The study aimed to determine the persistence, dissipation kinetics and waiting period of acephate on green pea. Acephate was sprayed at 75% soluble powder (SP) at 560 g a.i.ha-1 at the fruiting stage followed by another application at a 10 day interval. A rapid and accurate method (quick, easy, cheap, effective, rugged and safe, QuEChERS) was used for extraction and the residue was determined by gas chromatography-electron capture detection on a CPSIL-8CB capillary column (0.25um film thickness, 0.25 mm i.d, 30 m length). At the fortification levels of 0.05, 0.1 and 0.5 mg kg-1 , the percentage recovery of acephate on green pea was found in the range of 71-107%. The initial deposit of green pea was estimated to be 0.37 mg kg-1 . At the indicated dose, the residue of acephate on green pea dissipated below the limit of quantification of 0.05 mg kg-1 after 10 days. Acephate degradation was quick in green pea, with a half-life of 4.07 days. For safe eating of green peas, a 10 day waiting period is recommended. The gas chromatography-electron capture detection technique was validated by following the SANTE standards.


Assuntos
Resíduos de Praguicidas , Pisum sativum , Cinética , Pisum sativum/química , Resíduos de Praguicidas/análise , Elétrons , Cromatografia Gasosa/métodos , Medição de Risco
4.
Mol Biol Rep ; 50(10): 8337-8348, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37592179

RESUMO

BACKGROUND: Leaf spot disease (LSD) of mulberry caused by Phloeospora maculans is a major threat to the silk industry of Jammu and Kashmir, India, therefore, it was necessary to study the population structure of the pathogen for successful management of the disease. METHODS AND RESULTS: To understand the diversity in the Phloeospora maculans, a combination of conventional (morphological, cultural and pathological) and molecular (ISSR markers) approaches were employed to discern the variability in 27 isolates collected from Srinagar, Bandipora, and Baramulla districts of Jammu and Kashmir, India. The studies revealed a high level of variability in the pathogen. Based on the morpho-cultural and pathological studies, the pathogen isolates were grouped into different categories based on colony growth, texture, margin and colour besides changes in colour of medium, incubation period, leaf area infected, etc.A high level of polymorphism was observed in different isolates of P. maculans using ISSR markers, which indicated that these markers are suitable for studying the genetic diversity in this pathogen. All the isolates (27) of P. maculans were clustered into two groups or populations as indicated by mean delta K value. Analysis of molecular variance revealed the low genetic variation among the populations (1.08%) and a high level of genetic variation within the populations (98.91%). Fst value was found to be 0.01 indicating smaller amount of genetic differentiation between the populations against calculated P-value of 0.29. CONCLUSION: A high level of diversity based on morphological, cultural, pathological and molecular levels was observed in Phloeospora maculans collected from various districts of Kashmir valley, which indicates that the study of population structure is necessary for successful management of the disease.


Assuntos
Ascomicetos , Morus , Morus/genética , Polimorfismo Genético , Ascomicetos/genética , Frutas , Índia
5.
Mol Biol Rep ; 50(9): 7173-7182, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37410347

RESUMO

BACKGROUND: The conidial Ascomycota fungus Wilsonomyces carpophilus causing shot hole in stone fruits is a major constraint in the production of stone fruits worldwide. Shothole disease symptoms appear on leaves, fruits, and twigs. Successful isolation of the pathogen from different hosts on synthetic culture medium is a time consuming and tedious procedure for identification of the pathogen based on morpho-cultural characterization. METHODS AND RESULTS: The present research was carried out to develop a successful PCR based early detection protocol for the shot hole disease of stone fruits, viz., peach, plum, apricot, cherry, and almond using the pathogen specific SSR markers developed from the Wilsonomyces carpophilus genome using Genome-wide Microsatellite Analysing Tool package (GMATA) software. Diseased leaf samples of different stone fruits were collected from the SKUAST-K orchard and the pathogen was isolated on potato dextrose agar (PDA) medium and maintained on Asthana and Hawkers' medium with a total of 50 pathogen isolates comprised of 10 isolates each from peach, plum, apricot, cherry and almond. The DNA was extracted from both healthy and infected leaf samples of different stone fruits. The DNA was also extracted from the isolated pathogen cultures (50 isolates). Out of 2851 SSR markers developed, 30 SSRs were used for the successful amplification of DNA extracted from all the 50 pathogen isolates. These SSRs were used for the amplification DNA from shot hole infected leaf samples of different stone fruits, but the amplification was not observed in the control samples (DNA from healthy leaves), thus confirming the detection of this disease directly from the shot hole infected samples using PCR based SSR markers. To our knowledge, this forms the first report of SSR development for the Wilsonomyces carpophilus and their validation for the detection of shot hole disease directly from infected leaves. CONCLUSION: PCR based SSR makers were successfully developed and used for the detection of Wilsonomyces carpophilus causing shot hole disease in stone fruits including almond in nuts for the first time. These SSR markers could successfully detect the pathogen directly from the infected leaves of stone fruits namely peach, plum, apricot and cherry including almond from the nuts.


Assuntos
Ascomicetos , Prunus domestica , Frutas/microbiologia , Ascomicetos/genética , Reação em Cadeia da Polimerase , Prunus domestica/genética
6.
3 Biotech ; 13(8): 273, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37449250

RESUMO

Apple scab instigated by Venturia inaequalis impels remarkable losses to apple fruit production. In an effort to comprehend the key mechanisms of evolutionary potential defining V. inaequalis population, 132 isolates of V. inaequalis from five commercial apple orchards were collected and assayed using 14 microsatellite markers. The average diversity was observed within the individuals of populations based on the Shannon-Wieners index (I) and observed heterozygosity (Ho) was average but considerably lower than expected heterozygosity (He). The genetic differentiation based on FST values was revealed as an average measure of divergence between populations and had varying proportions of gene flow and migration among themselves. Analysis of Molecular Variance (AMOVA) revealed that variance (94%) was dispersed across individuals with a significant (6%) variation between populations from different regions. To examine host specialization within the V. inaequalis population, the assignment approach based on K-means of clustering (an unsupervised machine learning approach), revealed that the clustering method supported three clusters at (K = 3) and three major clusters were also observed in Principle Component Analysis (PCA). Additionally, Nei's genetic distance values, pairwise estimates of genetic differentiation, dendrogram using the neighbor-joining and PCoA revealed the random distribution of V. Inaequalis isolates that depicted a high proportion of genotypic diversity within populations and population genetic structure. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03672-2.

7.
Mol Biol Rep ; 50(5): 4061-4071, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877348

RESUMO

BACKGROUND: Shot hole is one of the important fungal diseases in stone fruits viz., peach, plum, apricot and cherry caused by Wilsonomyces carpophilus and almond among nut crops. Fungicides significantly decrease the disease. Pathogenicity studies proved a wide host range of the pathogen infecting all stone fruits and almond among the nut crops, however, the mechanism underlying host-pathogen interaction is still unknown. Molecular detection of the pathogen using polymerase chain reaction (PCR) based simple sequence repeat (SSR) markers is also unknown due to the unavailability of the pathogen genome. METHODS AND RESULTS: We examined the morphology, pathology and genomics of the Wilsonomyces carpophilus. Whole genome sequencing of the W. carpophilus was carried out by Illumina HiSeq and PacBio high throughput sequencing plate-forms through hybrid assembly. Constant selection pressure alters the molecular mechanism of the pathogen causing disease. The studies revealed that the necrotrophs are more lethal with a complex pathogenicity mechanism and little-understood effector repositories. The different isolates of necrotrophic fungus W. carpophilus causing shot hole in stone fruits namely peach, plum, apricot and cherry, and almonds among the nut crops showed a significant variation in their morphology, however, the probability value (p = 0.29) suggests in-significant difference in the pathogenicity. Here, we reported draft genome of W. carpophilus of size 29.9 Mb (Accession number: PRJNA791904). A total of 10,901 protein-coding genes were predicted, including heterokaryon incompatibility genes, cytochrome-p450 genes, kinases, sugar transporters among others. We found 2851 simple sequence repeats (SSRs), tRNAs, rRNAs and pseudogenes in the genome. The most prominent proteins showing necrotrophic lifestyle of the pathogen were hydrolases, polysaccharide-degrading enzymes, esterolytic, lipolytic, and proteolytic enzymes accounted for 225 released proteins. Among the 223 fungal species, top-hit species distribution revealed the majority of hits against the Pyrenochaeta species followed by Ascochyta rabiei and Alternaria alternata. CONCLUSION: Draft genome of W. carpophilus is 29.9 Mb based on Illumina HiSeq and PacBio hybrid assembly. The necrotrophs are more lethal with a complex pathogenicity mechanism. A significant variation in morphology was observed in different pathogen isolates. A total of 10,901 protein-coding genes were predicted in the pathogen genome including heterokaryon incompatibility, cytochrome-p450 genes, kinases and sugar transporters. We found 2851 SSRs, tRNAs, rRNAs and pseudogenes, and prominent proteins showing necrotrophic lifestyle such as hydrolases, polysaccharide-degrading enzymes, esterolytic, lipolytic and proteolytic enzymes. The top-hit species distribution were against the Pyrenochaeta spp. followed by Ascochyta rabiei.


Assuntos
Frutas , Prunus domestica , Frutas/microbiologia , Sequenciamento Completo do Genoma , Peptídeo Hidrolases , Citocromos , Açúcares
8.
Sci Rep ; 12(1): 20392, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437280

RESUMO

Chili (Capsicum annuum L.) and brinjal (Solanum melongena L.) are the most widely grown solanaceous crops in the world. However, their production has reduced over several years due to the attack of various fungal and bacterial pathogens and various abiotic factors. Still, the major constrain in their production are pathogens with fungal etiology, especially the fungal wilt of solanaceous crops. Fusarium oxysporum and Fusarium solani have been previously identified as the pathogens causing wilt disease in chili and brinjal. Recently, a new fungal pathogen F. equiseti has been reported as the causal agent of wilt disease infecting chili. The current study focused on identifying fungal pathogens associated with the wilted plants of chili and brinjal, collected from different parts of the Himalayan region of Kashmir valley, through morpho-cultural and molecular characterization. DNA extraction, PCR amplification, and sequencing were performed on various isolates. DNA barcoding using the internal transcribed spacer region (ITS) was used to identify the pathogen followed by the pathogenicity test. Further confirmation of the pathogen was done by sequencing of transcription elongation factor (TEF) and Calmodulin (CAL2). In current study Fusarium chlamydosporum has been reported as the wilt causing pathogen of chili and brinjal for the first time in Kashmir Himalayas.


Assuntos
Capsicum , Solanum melongena , Solanum melongena/microbiologia , Verduras , Produtos Agrícolas
9.
Front Plant Sci ; 13: 1081506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36600929

RESUMO

Powdery mildews (PM) are common and severe pathogen groups that threaten plants, and PM resistance is complex and polygenic in cucumbers. Previously mlo-based resistance was reported in various plants, including cucumber, with generated loss-of CsaMLO function mutants. However, mlo-based resistance in cucumber is also complex and involves additional mechanisms such as hypersensitive response (HR) and papillae formation. For this reason, we focused on determining the mlo-based powdery mildew resistance mechanism in cucumber. CRISPR/Cas9 was used in the present study to generate loss-of-function mutants for CsaMLO1, CsaMLO8, and CsaMLO11 of PM susceptible ADR27 cucumber inbred lines and CsaMLO mutants were obtained and validated. Trypan Blue and DAB staining were performed to detect Podosphaera xanthii germination/penetration rates and accumulation of Reactive Oxygen Species (ROS). Our results indicate that PM-susceptibility associated CsaMLOs in cucumber are negative regulators in different defense mechanisms against powdery mildew at early and late stages of infection. Further, the experiment results indicated that CsaMLO8 mutation-based resistance was associated with the pre-invasive response, while CsaMLO1 and CsaMLO11 could be negative regulators in the post-invasive defense response in cucumber against P. xanthii. Although the loss-of CsaMLO8 function confers the highest penetration resistance, CsaMLO1 and CsaMLO11 double mutations could be potential candidates for HR-based resistance against PM pathogen in cucumber. These results highlighted the crucial role of CRISPR/Cas9 to develop PM resistant cucumber cultivars, possessing strong pre-invasive defense with CsaMLO8 or post-invasive with CsaMLO1/CsaMLO11 mutations.

10.
Front Plant Sci ; 11: 571618, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123180

RESUMO

Common bean (Phaseolus vulgaris L.) is an important legume crop of north-western (NW) Himalayan region and the major disease that causes catastrophic loss to the crop is anthracnose, which is caused by Colletotrichum lindemuthianum. The pathogen is highly diverse and most of the commercial cultivars are susceptible to different races prevalent in the region. The lack of information on the genomic regions associated with anthracnose resistance in NW Himalayan common bean population prompted us to dissect Quantitative Resistance Loci (QRLs) against major anthracnose races. In this study, 188 common bean landraces collected from NW region were screened against five important anthracnose races and 113 bean genotypes showed resistance to one or multiple races. Genotyping by sequencing (GBS) was performed on a panel of 192 bean lines (4 controls plus 188 Indian beans) and 22,589 SNPs were obtained that are evenly distributed. Population structure analysis of 192 bean genotypes categorized 188 Indian beans into two major clusters representing Andean and Mesoamerican gene pools with obvious admixtures. Many QRLs associated with anthracnose resistance to Indian C. lindemuthianum virulences (race 3, 87, and 503) are located at Pv04 within the gene models that encode typical resistance gene signatures. The QRLs associated with race 73 are located on Pv08 and overlaps with Co-4 anthracnose resistance gene. A SNP located at distal end of Pv11 in a gene model Phvul.011G202300 which encodes a LRR with a typical NB-ARC domain showed association with race 73 resistance. Common bean genomic regions located at Pv03, Pv09, and Pv11 showed association with resistance to anthracnose race 2047. The present study showed presence of many novel bean genomic regions associated with anthracnose resistance. The presence of Co-4 and Co-2 genes in our material is encouraging for breeding durable anthracnose resistant cultivars for the region.

11.
J Microbiol Methods ; 171: 105885, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32147575

RESUMO

Thyrostroma carpophilum, a causal agent of shot hole disease of stone fruits, cause severe loss in economically important fruit crops of Kashmir. Understanding its pathogenesis at molecular level will aid in devising a better management strategy. In this study, we optimized Agrobacterium tumefaciens mediated transformation (ATMT) conditions for T. carpophilum using PBIF2-EGFP construct. Using this protocol, we obtained 328 positive transformants per 104 spores and subsequent sub-culturing of transformants on selective and non-selective media resulted in stable T-DNA integration. Southern blot analysis revealed that most of the transformants embodied single T-DNA integration. Using this method, we obtained a small-scale transformant library (2050 transformants). Among this pool, we tested 1005 transformants for their pathogenicity; out of which 185 showed complete pathogenicity loss, 35 displayed reduced virulence and 785 were pathogenically similar to wild type. Out of this experimental stock, three transformants from each category were randomly selected to dissect the infection assay. The findings deciphered that transformants with complete pathogenicity loss failed to penetrate the host tissue and a few transformants failed to sporulate in laboratory. Transformants from reduced category could not form appressorium and occasionally sporulated. Transformants similar to wild type were morphologically and pathogenically similar to wild type because of un-alteration in their modus operandi. Our work provides a new platform to understand the pathogenicity mechanism of T. carpophilum. The optimized ATMT protocol will help in developing large transformant library that can help to identify the virulence arsenals necessary for the pathogen to cause disease.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Mutagênese Insercional/métodos , Esporos Fúngicos/genética , Transformação Genética/genética , Ascomicetos/isolamento & purificação , DNA Fúngico/genética , Frutas/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...