Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 102(6): 1371-1380, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29021367

RESUMO

The vertebrate immune response comprises multiple molecular and cellular components that interface to provide defense against pathogens. Because of the dynamic complexity of the immune system and its interdependent innate and adaptive functionality, an understanding of the whole-organism response to pathogen exposure remains unresolved. Zebrafish larvae provide a unique model for overcoming this obstacle, because larvae are protected against pathogens while lacking a functional adaptive immune system during the first few weeks of life. Zebrafish larvae were exposed to immune agonists for various lengths of time, and a microarray transcriptome analysis was executed. This strategy identified known immune response genes, as well as genes with unknown immune function, including the E3 ubiquitin ligase tripartite motif-9 (Trim9). Although trim9 expression was originally described as "brain specific," its expression has been reported in stimulated human Mϕs. In this study, we found elevated levels of trim9 transcripts in vivo in zebrafish Mϕs after immune stimulation. Trim9 has been implicated in axonal migration, and we therefore investigated the impact of Trim9 disruption on Mϕ motility and found that Mϕ chemotaxis and cellular architecture are subsequently impaired in vivo. These results demonstrate that Trim9 mediates cellular movement and migration in Mϕs as well as neurons.


Assuntos
Movimento Celular , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Movimento Celular/genética , Forma Celular , Quimiotaxia , Humanos , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Motivo Tripartido/genética , Células U937 , Ubiquitina-Proteína Ligases/genética , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética
2.
Adv Hematol ; 2012: 596925, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049557

RESUMO

The novel immune-type receptors (NITRs), which have been described in numerous bony fish species, are encoded by multigene families of inhibitory and activating receptors and are predicted to be functional orthologs to the mammalian natural killer cell receptors (NKRs). Within the zebrafish NITR family, nitr9 is the only gene predicted to encode an activating receptor. However, alternative RNA splicing generates three distinct nitr9 transcripts, each of which encodes a different isoform. Although nitr9 transcripts have been detected in zebrafish lymphocytes, the specific hematopoietic lineage(s) that expresses Nitr9 remains to be determined. In an effort to better understand the role of NITRs in zebrafish immunity, anti-Nitr9 monoclonal antibodies were generated and evaluated for the ability to recognize the three Nitr9 isoforms. The application of these antibodies to flow cytometry should prove to be useful for identifying the specific lymphocyte lineages that express Nitr9 and may permit the isolation of Nitr9-expressing cells that can be directly assessed for cytotoxic (e.g., NK) function.

3.
Mol Immunol ; 46(7): 1505-16, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19200601

RESUMO

A recessive nonsense mutation in the zebrafish recombination activating gene 1 (rag1) gene results in defective V(D)J recombination; however, animals homozygous for this mutation (rag1(-/-)) are reportedly viable and fertile in standard, nonsterile aquarium conditions but display increased mortality after intraperitoneal injection with mycobacteria. Based on their survival in nonsterile environments, we hypothesized that the rag1(-/-) zebrafish may possess an "enhanced" innate immune response to compensate for the lack of an adaptive immune system. To test this hypothesis, microarray analyses were used to compare the expression profiles of the intestines and hematopoietic kidneys of rag1 deficient zebrafish to the expression profiles of control (heterozygous) siblings. The expression levels of 12 genes were significantly altered in the rag1(-/-) kidney including the up regulation of a putative interferon stimulated gene, and the down regulation of genes encoding fatty acid binding protein 10, keratin 5 and multiple heat shock proteins. The expression levels of 87 genes were shown to be significantly altered in the rag1(-/-) intestine; the majority of these differences reflect increased expression of innate immune genes, including those of the coagulation and complement pathways. Subsequent analyses of orthologous coagulation and complement genes in Rag1(-/-) mice indicate increased transcription of the complement C4 gene in the Rag1(-/-) intestine.


Assuntos
Fatores de Coagulação Sanguínea/genética , Proteínas do Sistema Complemento/genética , Imunidade/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Animais , Animais Geneticamente Modificados , Fatores de Coagulação Sanguínea/metabolismo , Complemento C4/genética , Complemento C4/metabolismo , Proteínas do Sistema Complemento/metabolismo , Feminino , Perfilação da Expressão Gênica , Genes RAG-1/fisiologia , Imunidade/genética , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica , Regulação para Cima , Peixe-Zebra
4.
Immunogenetics ; 59(10): 813-21, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17891481

RESUMO

Both inhibitory and activating forms of natural killer (NK) cell receptors are found in mammals. The activating receptors play a direct role in the recognition of virally infected or transformed cells and transduce activating signals into the cell by partnering with an adaptor protein, which contains a cytoplasmic activation motif. Activating NK receptors encoded by the mammalian leukocyte receptor complex (e.g., killer cell immunoglobulin-like receptors) and the natural killer complex (e.g., Ly49s) partner with the adaptor protein DAP12, whereas NK receptors encoded in the CD94/NKG2 complex partner with the adaptor protein DAP10. Novel immune-type receptors (NITRs) found in bony fish share several common features with immunoglobulin-type NK receptors. Nitr9 is a putative activating receptor in zebrafish that induces cytotoxicity within the context of human NK cells. One isoform of Nitr9, Nitr9L, is shown here to preferentially partner with a zebrafish ortholog of Dap12. Cross-linking the Nitr9L-Dap12 complex results in activation of the phosphytidylinositol 3-kinase-->AKT-->extracellular signal-regulated kinase pathway suggesting that the DAP12-based activating pathway is conserved between bony fish and mammals.


Assuntos
Receptores KIR/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Dados de Sequência Molecular , Fosforilação , Receptores KIR/genética , Receptores KIR/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transdução de Sinais/imunologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...