Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38559218

RESUMO

Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, indicating that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, highlighting the differential impact of DEGs on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we note an overall downregulation of both astrocyte and microglia modules in AD across all brain regions, suggesting a prevailing trend of functional repression in glial cells across these regions. Notable genes, including those of the CALM and HSP90 family genes emerged as hub genes across neuronal modules in all brain regions, indicating conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis for a comprehensive understanding of the cell-type-specific roles of genes in AD-related biological processes.

2.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38277467

RESUMO

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Peptídeos , Proteômica
3.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577533

RESUMO

Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell. In this study, we leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years (young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in cellular composition of different brain regions with healthy aging. Surprisingly, we did find that each brain region has a distinct aging signature, with only minor overlap in differentially associated genes across regions. Moreover, each cell type shows distinct age-associated expression changes, including loss of protein synthesis genes in cortical inhibitory neurons, axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for neuron-glia communication. Importantly, we find cell type-specific enrichments of age associations with genes nominated by Alzheimer's disease and Parkinson's disease genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across cell types. We present this data as a new resource which highlights, first, region- and cell type-specific transcriptomic changes in healthy aging that may contribute to selective vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in relevant subtypes and developing more targeted therapeutic strategies. The data is readily accessible without requirement for extensive computational support in a public website, https://brainexp-hykyffa56a-uc.a.run.app/.

4.
Nutrients ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447302

RESUMO

SARS-CoV-2 vaccination promises to improve outcomes for patients with COVID-19 pneumonia (most notably those with advanced age and at high risk for severe disease). Here, we examine serum 25-Hydroxyvitamin D (25(OH)D) status and outcomes in both old (>70 years) and young vaccinated (n = 80) and unvaccinated (n = 91) subjects, who were hospitalized due to COVID-19 pneumonia in a single center (Connolly Hospital Dublin). Outcomes included ICU admission and mortality. Serum 25(OH)D levels were categorized as D30 (<30 nmol/L), D40 (30-49.99 nmol/L) and D50 (≥50 nmol/L). In multivariate analyses, D30 was independently associated with ICU admission (OR: 6.87 (95% CI: 1.13-41.85) (p = 0.036)) and mortality (OR: 24.81 (95% CI: 1.57-392.1) (p = 0.023)) in unvaccinated patients, even after adjustment for major confounders including age, sex, obesity and pre-existing diabetes mellitus. While mortality was consistently higher in all categories of patients over 70 years of age, the highest observed mortality rate of 50%, seen in patients over 70 years with a low vitamin D state (D30), appeared to be almost completely corrected by either vaccination, or having a higher vitamin D state, i.e., mortality was 14% for vaccinated patients over 70 years with D30 and 16% for unvaccinated patients over 70 years with a 25(OH)D level greater than 30 nmol/L. We observe that high mortality from COVID-19 pneumonia occurs in older patients, especially those who are unvaccinated or have a low vitamin D state. Recent vaccination or having a high vitamin D status are both associated with reduced mortality, although these effects do not fully mitigate the mortality risk associated with advanced age.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Idoso , Idoso de 80 Anos ou mais , SARS-CoV-2 , COVID-19/prevenção & controle , Vitamina D , Vitaminas , Hospitais , Vacinação
5.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747793

RESUMO

Functional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of de novo protein synthesis from cryptic exon transcripts has not been explored. Here, we show that mRNA transcripts harboring cryptic exons generate de novo proteins both in TDP-43 deficient cellular models and in disease. Using coordinated transcriptomic and proteomic studies of TDP-43 depleted iPSC-derived neurons, we identified numerous peptides that mapped to cryptic exons. Cryptic exons identified in iPSC models were highly predictive of cryptic exons expressed in brains of patients with TDP-43 proteinopathy, including cryptic transcripts that generated de novo proteins. We discovered that inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Finally, we showed that these de novo peptides were present in CSF from patients with ALS. The demonstration of cryptic exon translation suggests new mechanisms for ALS pathophysiology downstream of TDP-43 dysfunction and may provide a strategy for novel biomarker development.

6.
Cells ; 11(14)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35883609

RESUMO

Neurotransmitter release from presynaptic terminals is primarily regulated by rapid Ca2+ influx through membrane-resident voltage-gated Ca2+ channels (VGCCs). Moreover, accumulating evidence indicates that the endoplasmic reticulum (ER) is extensively present in axonal terminals of neurons and plays a modulatory role in synaptic transmission by regulating Ca2+ levels. Familial Alzheimer's disease (FAD) is marked by enhanced Ca2+ release from the ER and downregulation of Ca2+ buffering proteins. However, the precise consequence of impaired Ca2+ signaling within the vicinity of VGCCs (active zone (AZ)) on exocytosis is poorly understood. Here, we perform in silico experiments of intracellular Ca2+ signaling and exocytosis in a detailed biophysical model of hippocampal synapses to investigate the effect of aberrant Ca2+ signaling on neurotransmitter release in FAD. Our model predicts that enhanced Ca2+ release from the ER increases the probability of neurotransmitter release in FAD. Moreover, over very short timescales (30-60 ms), the model exhibits activity-dependent and enhanced short-term plasticity in FAD, indicating neuronal hyperactivity-a hallmark of the disease. Similar to previous observations in AD animal models, our model reveals that during prolonged stimulation (~450 ms), pathological Ca2+ signaling increases depression and desynchronization with stimulus, causing affected synapses to operate unreliably. Overall, our work provides direct evidence in support of a crucial role played by altered Ca2+ homeostasis mediated by intracellular stores in FAD.


Assuntos
Doença de Alzheimer , Cálcio , Animais , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Neurotransmissores/metabolismo
7.
PLoS One ; 14(9): e0223014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31557225

RESUMO

Fragmentation of mitochondrial network has been implicated in many neurodegenerative, renal, and metabolic diseases. However, a quantitative measure of the microscopic parameters resulting in the impaired balance between fission and fusion of mitochondria and consequently the fragmented networks in a wide range of pathological conditions does not exist. Here we present a comprehensive analysis of mitochondrial networks in cells with Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), optic neuropathy (OPA), diabetes/cancer, acute kidney injury, Ca2+ overload, and Down Syndrome (DS) pathologies that indicates significant network fragmentation in all these conditions. Furthermore, we found key differences in the way the microscopic rates of fission and fusion are affected in different conditions. The observed fragmentation in cells with AD, HD, DS, kidney injury, Ca2+ overload, and diabetes/cancer pathologies results from the imbalance between the fission and fusion through lateral interactions, whereas that in OPA, PD, and ALS results from impaired balance between fission and fusion arising from longitudinal interactions of mitochondria. Such microscopic difference leads to major disparities in the fine structure and topology of the network that could have significant implications for the way fragmentation affects various cell functions in different diseases.


Assuntos
Mitocôndrias/patologia , Dinâmica Mitocondrial , Doenças Neurodegenerativas/patologia , Animais , Caenorhabditis elegans , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Intravital , Camundongos , Microscopia de Fluorescência , Ratos
8.
Cent European J Urol ; 68(2): 165-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251735

RESUMO

INTRODUCTION: Prostate cancer is a large clinical burden across Europe. It is, in fact, the most common cancer in males, accounting for more than 92,300 deaths annually throughout the continent. Prostate cancer is androgen-sensitive; thus an androgen deprivation therapy (ADT) is often used for treatment by reducing androgen to castrate levels. Several ADT agents have achieved benefits with effective palliation, but, unfortunately, severe adverse events are frequent. Contemporary ADT (Luteinising Hormone Releasing Hormone agonist - LHRHa injections) can result in side effects that include osteoporosis and fractures, compromising quality of life and survival. METHODS: In this review we analysed the associated bone toxicity consequent upon contemporary ADT and based on the literature and our own experience we present future perspectives that seek to mitigate this associated toxicity both by development of novel therapies and by better identification and prediction of fracture risk. RESULTS: Preliminary results indicate that parenteral oestrogen can mitigate associated osteoporotic risk and that CT scans could provide a more accurate indicator of overall bone quality and hence fracture risk. CONCLUSIONS: As healthcare costs increase globally, cheap and effective alternatives that achieve ADT, but mitigate or avoid such bone toxicities, will be needed. More so, innovative techniques to improve both the measurement and the extent of this toxicity, by assessing bone health and prediction of fracture risk, are also required.

9.
Asian J Androl ; 17(2): 261-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25370207

RESUMO

Titanium dioxide (TiO 2 ) nanoparticles (TNPs) are widely used commercially and exist in a variety of products. To determine if anatase TNPs (ATNPs) in doses smaller than previously used reach the scrotum after entry in the body at a distant location and induce sperm defects, 100% ATNP (2.5 or 5 mg kg-1 body weight) was administered intraperitoneally to adult males for three consecutive days, followed by sacrifice 1, 2, 3, or 5 weeks later (long-) or 24, 48 or 120 h (short-term exposure). Transmission electron microscopy revealed the presence of ANTP in scrotal adipose tissues collected 120 h postinjection when cytokine evaluation showed an inflammatory response in epididymal tissues and fluid. At 120 h and up to 3 weeks postinjection, testicular histology revealed enlarged interstitial spaces. Significantly increased numbers of terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling-positive (apoptotic) germ (P = 0.002) and interstitial space cells (P = 0.04) were detected in treated males. Caudal epididymal sperm from the short-term, but not a long-term, arm showed significantly (P < 0.001) increased frequencies of flagellar abnormalities, excess residual cytoplasm (ERC), and unreacted acrosomes in treated versus controls (dose-response relationship). A novel correlation between ERC and unreacted acrosomes was uncovered. At 120 h, there were significant decreases in hyperactivated motility (P < 0.001) and mitochondrial membrane potential (P < 0.05), and increased reactive oxygen species levels (P < 0.00001) in treated versus control sperm. These results indicate that at 4-8 days postinjection, ANTP induce structural and functional sperm defects associated with infertility, and DNA damage via oxidative stress. Sperm defects were transient as they were not detected 10 days to 5 weeks postinjection.


Assuntos
Nanopartículas/efeitos adversos , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/farmacologia , Espermatozoides/efeitos dos fármacos , Titânio/efeitos adversos , Titânio/farmacologia , Acrossomo/efeitos dos fármacos , Acrossomo/patologia , Acrossomo/fisiologia , Animais , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Flagelos/efeitos dos fármacos , Flagelos/patologia , Flagelos/fisiologia , Injeções Intraperitoneais , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Modelos Animais , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fármacos Fotossensibilizantes/administração & dosagem , Espermatozoides/patologia , Espermatozoides/fisiologia , Fatores de Tempo , Titânio/administração & dosagem
11.
Oncol Hematol Rev ; 10(1): 42-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24932461

RESUMO

Androgen deprivation therapy (ADT) resulting in testosterone suppression is central to the management of prostate cancer (PC). As PC incidence increases, ADT is more frequently prescribed, and for longer periods of time as survival improves. Initial approaches to ADT included orchiectomy or oral estrogen (diethylstilbestrol [DES]). DES reduces PC-specific mortality, but causes substantial cardiovascular (CV) toxicity. Currently, luteinizing hormone-releasing hormone agonists (LHRHa) are mainly used; they produce low levels of both testosterone and estrogen (as estrogen in men results from the aromatization of testosterone), and many toxicities including osteoporosis, fractures, hot flashes, erectile dysfunction, muscle weakness, increased risk for diabetes, changes in body composition, and CV toxicity. An alternative approach is parenteral estrogen, it suppresses testosterone, appears to mitigate the CV complications of oral estrogen by avoiding first-pass hepatic metabolism, and avoids complications caused by estrogen deprivation. Recent research on the toxicity of ADT and the rationale for revisiting parenteral estrogen is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...