Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(15): 6758-6765, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533553

RESUMO

The current work demonstrates the reversible control of substantial molecular motion in 'nano-sized' molecules, where two structural isomers can 'open' and 'close' their cavities in response to light or heat. The isomers differ widely in their photophysical properties, including colour, polarity, two-photon absorption and π-conjugation, and can easily be separated through column chromatography and thus have wide applicability.

2.
Chemistry ; 29(64): e202301963, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37602834

RESUMO

We report an unexpected rearrangement, controlled by the nature of the bridge, leading to the formation of novel, remarkably stable triply fused dinickel(II)/dicopper(II) chlorin-porphyrin dication diradical heterodimers in excellent yields. Here, a dipyrromethene bridge gets completely fused between two porphyrin macrocycles with two new C-C and one C-N bonds. The two macrocycles exhibit extensive π-conjugation through the bridge, which results in an antiferromagnetic coupling between the two π-cation radicals. In addition, the macrocyclic distortion also favours a rare intramolecular ferromagnetic interaction between the CuII and π-cation radical spins to form a triplet state. The structural and electronic perturbation in the unconjugated dication diradical possibly enables the bridging pyrrolic nitrogen to undergo a nucleophilic attack at the nearby ß-carbon of the porphyrin π-cation radical with a computed free energy barrier of >20 kcal mol-1 which was supplied in the form of reflux condition to initiate such a rearrangement process. UV-vis, EPR and ESI-MS spectroscopies were used to monitor the rearrangement process in situ in order to identify the key reactive intermediates leading to such an unusual transformation.

3.
Dalton Trans ; 52(4): 877-891, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36464989

RESUMO

A dinickel(II)porphyrin dimer has been used here in which the redox-active pyrrole-moiety, similar to the tryptophan residue in diheme enzymes such as MauG and bCcP, has been placed between two Ni(II)porphyrin centers connected via a flexible, but unconjugated methylene bridge. This arrangement provides a large physical separation between the two metal centers and thus displays almost no communication between them through the bridge. Upon treatment with DDQ as an oxidant, the dinickel(II) porphyrin dimer slowly gets converted into an indolizinium-fused chlorin-porphyrin heterodimer. However, oxidations of the dinickel(II) porphyrin dimer up to two oxidizing equivalents using oxidants such as AgSbF6 and FeCl3 resulted in the formation of a dication diradical complex. Interestingly, in order to stabilize such a highly oxidized dication diradical, two non-conjugated methylene spacers undergo facile 2e-/-2H+ oxidation to make the bridge fully π-conjugated for promoting through-bond communication. Through the oxidized and conjugated bridge, two porphyrin π-cation radicals display considerable communications leading to an efficient intramolecular spin coupling to form a singlet state. Interestingly, the redox-active nature of the bridge controls the electronic communication just by simple oxidation or reduction, and thereby, acts as a molecular switch for efficient magnetic relay.


Assuntos
Porfirinas , Porfirinas/química , Oxirredução , Pirróis , Oxidantes , Polímeros
4.
Inorg Chem ; 61(13): 5270-5282, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323011

RESUMO

Dinickel(II) and dicopper(II) porphyrin dimers have been constructed in which two metalloporphyrin units are widely separated by a long unconjugated dipyrrole bridge. Two macrocycles are aligned somewhat orthogonally to each other, while oxidation of the bridge generates a fully π-conjugated butterfly-like structure, which, in turn, upon stepwise oxidations by stronger oxidants result in the formation of the corresponding one- and two-electron-oxidized species exhibiting unusual long-range charge/radical delocalization to produce intense absorptions in the near-infrared (NIR) region and electron paramagnetic resonance (EPR) signals of a triplet state due to interaction between the unpaired spins on the Cu(II) ions. Although the two metal centers have a large physical separation through the bridge (more than 16 Å), they share electrons efficiently between them, behaving as a single unit rather than two independent centers. Detailed UV-vis-NIR, electrospray ionization mass spectrometry, IR, variable-temperature magnetic study, and EPR spectroscopic investigations along with X-ray structure determination of unconjugated, conjugated, and one electron-oxidized complexes have been exploited to demonstrate the long-range electronic communication through the bridge. The experimental observations are also supported by density functional theory (DFT) and time-dependent DFT calculations. The present study highlights the crucial roles played by a redox-active bridge and metal in controlling the long-range electronic communication.


Assuntos
Metais , Cristalografia por Raios X , Íons , Ligantes , Oxirredução
5.
Inorg Chem ; 60(17): 12870-12882, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34370470

RESUMO

Diheme cytochromes, the simplest members in the multiheme family, play substantial biochemical roles in enzymatic catalysis as well as in electron transfer. A series of diiron(III) porphyrin dimers have been synthesized as active site analogues of diheme cytochromes. The complexes contain six-coordinated iron(III) having thiophenol and imidazole at the fifth and sixth coordination sites, respectively. The iron centers in the complexes have been found to be in a low-spin state, as confirmed through solid-state Mössbauer and electron paramagnetic resonance (EPR) spectroscopic investigations. Mössbauer quadrupole splitting of complexes having mixed ligands is substantially larger than that observed when both axial ligands are the same. Rhombic types of EPR spectra with narrow separation between gx, gy, and gz clearly distinguish heme thiolate coordination compared to bis(imidazole)-ligated low-spin heme centers. The redox potential in diheme cytochromes has been found to be tuned by interheme interactions along with the nature of axial ligands. The effect of mixed-axial ligation within the diiron(III) porphyrin dimers is demonstrated by a positive shift in the Fe(III)/Fe(II) redox couple upon thiophenolate coordination compared to their bis(imidazole) analogues. The pKa of the imidazole also decides the extent of the shift for the Fe(III)/Fe(II) couple, while the potential of the mixed-ligated diiron(III) porphyrin dimer is more positive compared to their monomeric analogue. A variation of around 1.1 V for the Fe(III)/Fe(II) redox potential in the diiron(III) porphyrin dimer can be achieved with the combined effect of axial ligation and a metal spin state, while such a large variation in the redox potential, compared to their monomeric analogues, is attributed to the heme-heme interactions observed in dihemes. Moreover, theoretical calculations also support the experimental shifts in the redox potential values.


Assuntos
Imidazóis/química , Metaloporfirinas/química , Fenóis/química , Compostos de Sulfidrila/química , Citocromos/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Ferro/química , Ligantes , Metaloporfirinas/síntese química , Modelos Químicos , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Mossbauer
6.
Dalton Trans ; 48(19): 6353-6357, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30994665

RESUMO

A complete reversal of the spin state of iron(iii) is observed upon a small change to the diporphyrin bridge from ethane to ethene by keeping all other factors intact. Combined analysis using single crystal X-ray structure determination, Mössbauer, variable-temperature magnetic, 1H NMR and EPR studies has confirmed the spin states of iron(iii) complexes both in solid and solution phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...