Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 13(3): 035014, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29465410

RESUMO

Whole-organ engineering-based on the functional repopulation of acellular whole-organ scaffolds derived from perfusion-based in toto decellularization of the specific organ system-is one of the most promising fields in tissue engineering. However, to date, we still have hardly any insights into the process of perfusion-based scaffold generation itself, with human-scale scaffolds usually obtained by adoption of small animal decellularization models, although those organs are of decreased biomass and potentially different biological characteristics. Therefore, in this study we analyzed perfusion-based human-scale whole-heart decellularization by evaluating and comparing the dynamics of biomass discharge and its kinetic characteristics during in toto decellularization of ovine and rodent hearts, while introducing a theoretical model of biomass depletion during perfusion-based whole-heart decellularization. Our results suggest highly varying process characteristics for the in toto decellularization of individual human-scale organs, such as protein discharge kinetics or time-dependent viscoelasticity of formed debris, despite seemingly consistent inter-sample decellularization efficacy, as evaluated by conventional disruptive analysis of obtained ECM scaffolds. Hence, the here exposed insights into the mechanistics of whole-heart decellularization as well as the introduced non-disruptive process accompanying tools may help to monitor and further optimize the decellularization process, especially with regards to human-scale scaffold production.


Assuntos
Coração/fisiologia , Ovinos/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Biomassa , DNA/química , Elasticidade , Matriz Extracelular , Humanos , Masculino , Modelos Animais , Modelos Teóricos , Perfusão , Ratos , Reologia , Viscosidade
2.
Biofabrication ; 7(3): 035008, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26335521

RESUMO

The approach of whole organ decellularization is rapidly becoming more widespread within the tissue engineering community. Today it is well known that the effects of decellularization protocols may vary with the particular type of treated tissue. However, there are no methods known to individualize decellularization protocols while automatically ensuring a standard level of quality to minimize adverse effects on the resulting extracellular matrix. Here we follow this idea by introducing two novel components into the current practice. First, a non-invasive method for online monitoring of resulting fluid dynamical characteristics of the coronary system is demonstrated for application during the perfusion decellularization of whole hearts. Second, the observation of the underlying rheological characteristics of the perfusates is employed to detect ongoing progress and maturation of the decellularization process. Measured data were contrasted to the respective release of specific cellular components. We demonstrate rheological measurements to be capable of detecting cellular debris along with a discriminative capture of DNA and protein ratios. We demonstrate that this perfusate biomass is well correlated to the biomass loss in the extracellular matrix produced by decellularization. The appearance of biomass components in the perfusates could specifically reflect the appearance of fluid dynamical characteristics that we monitored during the decellularization process. As rheological measuring of perfusate samples can be done within minutes, without any time-consuming preparation steps, we predict this to be a promising novel analytic strategy to control decellularization protocols, in time, by the actual conditions of the processed organ.


Assuntos
Biomassa , Perfusão/métodos , Reologia/métodos , Engenharia Tecidual/métodos , Animais , Matriz Extracelular/fisiologia , Masculino , Miocárdio/citologia , Ratos , Ratos Wistar , Alicerces Teciduais
3.
Science ; 339(6123): 1048-51, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23449588

RESUMO

Stellar-mass black holes (BHs) are mostly found in x-ray transients, a subclass of x-ray binaries that exhibit violent outbursts. None of the 50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2-093313 is a very faint x-ray transient detected in 2011. On the basis of spectroscopic evidence, we show that it contains a BH in a 2.8-hour orbital period. Further, high-time-resolution optical light curves display profound dips without x-ray counterparts. The observed properties are best explained by the presence of an obscuring toroidal structure moving outward in the inner disk, seen at very high inclination. This observational feature should play a key role in models of inner accretion flows and jet collimation mechanisms in stellar-mass BHs.

4.
Nature ; 455(7212): 506-9, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18818652

RESUMO

Magnetars are young neutron stars with very strong magnetic fields of the order of 10(14)-10(15) G. They are detected in our Galaxy either as soft gamma-ray repeaters or anomalous X-ray pulsars. Soft gamma-ray repeaters are a rare type of gamma-ray transient sources that are occasionally detected as bursters in the high-energy sky. No optical counterpart to the gamma-ray flares or the quiescent source has yet been identified. Here we report multi-wavelength observations of a puzzling source, SWIFT J195509+261406. We detected more than 40 flaring episodes in the optical band over a time span of three days, and a faint infrared flare 11 days later, after which the source returned to quiescence. Our radio observations confirm a Galactic nature and establish a lower distance limit of approximately 3.7 kpc. We suggest that SWIFT J195509+261406 could be an isolated magnetar whose bursting activity has been detected at optical wavelengths, and for which the long-term X-ray emission is short-lived. In this case, a new manifestation of magnetar activity has been recorded and we can consider SWIFT J195509+261406 to be a link between the 'persistent' soft gamma-ray repeaters/anomalous X-ray pulsars and dim isolated neutron stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...