Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 4391-4394, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060870

RESUMO

In an objective approach for the assessment of quality of experience the neural correlates of EEG data are studied when stereoscopic images are presented in three different conditions containing vertical disparity. These conditions are compared to a similar image in 2D both on the channel level by studying the ERP components and on the source level by the localization of the corresponding ERP component. Our findings posit that P1 component in the occipital cortex has significantly increased in amplitude for 3D condition without vertical disparity compared to the 2D condition. According to previous studies, this component increases when depth information are added to the stimulus which is in line with our findings. However the amplitude of this component has significantly decreased for 3D condition with maximum vertical disparity compared to the 3D condition without vertical disparity. We have concluded that the perception of stereoscopic depth by subjects have decreased in this case due to the distortion introduced by vertical disparity. The underlying sources corresponding to P1 component are localized. Except for the power differences, the source locations do not differ for different conditions.


Assuntos
Imageamento Tridimensional , Percepção de Profundidade , Disparidade Visual
2.
Neuroimage ; 112: 299-309, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746153

RESUMO

MUltiple SIgnal Classification (MUSIC) is a standard localization method which is based on the idea of dividing the vector space of the data into two subspaces: signal subspace and noise subspace. The brain, divided into several grid points, is scanned entirely and the grid point with the maximum consistency with the signal subspace is considered as the source location. In one of the MUSIC variants called Recursively Applied and Projected MUSIC (RAP-MUSIC), multiple iterations are proposed in order to decrease the location estimation uncertainties introduced by subspace estimation errors. In this paper, we suggest a new method called Self-Consistent MUSIC (SC-MUSIC) which extends RAP-MUSIC to a self-consistent algorithm. This method, SC-MUSIC, is based on the idea that the presence of several sources has a bias on the localization of each source. This bias can be reduced by projecting out all other sources mutually rather than iteratively. While the new method is applicable in all situations when MUSIC is applicable we will study here the localization of interacting sources using the imaginary part of the cross-spectrum due to the robustness of this measure to the artifacts of volume conduction. For an odd number of sources this matrix is rank deficient similar to covariance matrices of fully correlated sources. In such cases MUSIC and RAP-MUSIC fail completely while the new method accurately localizes all sources. We present results of the method using simulations of odd and even number of interacting sources in the presence of different noise levels. We compare the method with three other source localization methods: RAP-MUSIC, dipole fit and MOCA (combined with minimum norm estimate) through simulations. SC-MUSIC shows substantial improvement in the localization accuracy compared to these methods. We also show results for real MEG data of a single subject in the resting state. Four sources are localized in the sensorimotor area at f=11Hz which is the expected region for the idle rhythm.


Assuntos
Eletroencefalografia/estatística & dados numéricos , Magnetoencefalografia/estatística & dados numéricos , Algoritmos , Mapeamento Encefálico , Simulação por Computador , Humanos , Software
3.
J Neurosci Methods ; 233: 177-86, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975293

RESUMO

Considering that many biological systems including the brain are complex non-linear systems, suitable methods capable of detecting these non-linearities are required to study the dynamical properties of these systems. One of these tools is the third order cummulant or cross-bispectrum, which is a measure of interfrequency interactions between three signals. For convenient interpretation, interaction measures are most commonly normalized to be independent of constant scales of the signals such that its absolute values are bounded by one, with this limit reflecting perfect coupling. Although many different normalization factors for cross-bispectra were suggested in the literature these either do not lead to bounded measures or are themselves dependent on the coupling and not only on the scale of the signals. In this paper we suggest a normalization factor which is univariate, i.e., dependent only on the amplitude of each signal and not on the interactions between signals. Using a generalization of Hölder's inequality it is proven that the absolute value of this univariate bicoherence is bounded by zero and one. We compared three widely used normalizations to the univariate normalization concerning the significance of bicoherence values gained from resampling tests. Bicoherence values are calculated from real EEG data recorded in an eyes closed experiment from 10 subjects. The results show slightly more significant values for the univariate normalization but in general, the differences are very small or even vanishing in some subjects. Therefore, we conclude that the normalization factor does not play an important role in the bicoherence values with regard to statistical power, although a univariate normalization is the only normalization factor which fulfills all the required conditions of a proper normalization.


Assuntos
Dinâmica não Linear , Processamento de Sinais Assistido por Computador , Algoritmos , Encéfalo/fisiologia , Eletroencefalografia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...