Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123850, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219614

RESUMO

In this study, a novel composite material was developed for the ratiometric detection of pyrophosphate anion (P2O74-). This composite consisted of Al and nitrogen co-doped carbon dots (Al-N@CQDs) and glutathione-capped copper nanoclusters (GSH@CuNCs). The Al-N@CQDs component, with its high reserved coordination capacity of Al3+, induced the non-luminescent behavior of GSH@CuNCs, resulting in an aggregation-induced emission (AIE) effect. The hybrid material (Al-N@CQDs/GSH@CuNCs) exhibited dual-emission signals at 620 nm and 450 nm after integrating the two independent materials utilizing the AIE effect and the fluorescence resonance energy transfer (FRET) approach. This approach represents the first utilization of this composite for ratiometric detection. Nevertheless, upon the addition of P2O74-, the AIE and FRET processes were hindered due to the higher coordination interaction of Al3+ towards P2O74- compared to the amino/carboxyl groups on Al-N@CQDs. This successful interference of the AIE and FRET processes allowed for the effective estimation of P2O74-. The response ratio (F450/F620) increased with increasing the concentration of P2O74- in the range of 0.035-160 µM, with an impressive detection limit of 0.012 µM. This innovative approach of utilizing hybrid CQDs/thiolate-capped nanoclusters as a ratiometric fluorescent sensor for analytical applications introduces new possibilities in the field. The as-fabricated system was successfully applied to detect P2O74- in different real samples such as water, serum, and urine samples with acceptable results.

2.
RSC Adv ; 13(34): 23736-23744, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37555090

RESUMO

Water contamination with harmful ions has grown to be a significant environmental issue on a global scale. Therefore, the fabrication of simple, cost-effective, and reliable sensors is essential for identifying these ions. Herein, co-doping of carbon dots with new caffeine and H3BO3-derived boron (B) and nitrogen (N) was performed (BN@CDs). The as-prepared BN@CDs probe was used for the tandem fluorescence sensing of Al3+ and F- based on "ON-OFF-ON" switches. The BN@CDs nanoswitch has a high quantum yield of 44.8% with λexc. and λem. of 360 nm and 440 nm, respectively. The probe exhibited good stability with different pH, ionic-strengths, and irradiation times. The fluorescence emission of BN@CDs was decreased as the Al3+ concentration was increased with a linear range of 0.03-90 µM and a limit of detection (S/N = 3) equal to 9.0 nM. Addition of F- restored the BN@CDs emission as F- ions form a strong and stable complex with Al3+ ions [Al(OH)3F]-. Therefore, the ratio response (F/F°) was raised by raising the F- ion concentration to the range of 0.18-80 µM with a detection limit (S/N = 3) of 50.0 nM. The BN@CDs sensor exhibits some advantages over other reported methods in terms of simplicity, high quantum yield, and low detection limit. Importantly, the sensor was successfully applied to determine Al3+ and F- in various ecological water specimens with accepted results.

3.
Mikrochim Acta ; 189(5): 183, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394214

RESUMO

An one-pot hydrothermal method was developed for synthesis of carbon quantum dots co-doped with copper and nitrogen (Cu, N@CQDs). The synthesized Cu, N@CQDs has unique advantages such as high fluorescence quantum yield (39.1%) and high catalytic activity. Oxidative coupling of amoxicillin (AMX) with 4-aminoantipyrine (4-NH2-APE) in the presence of H2O2 as an oxidant to produce pink quinoneimine chromogen was carried out with the aid of Cu, N@CQDs as a peroxidase-like catalyst. This system was used for the colorimetric and fluorometric assays of AMX with reliable results. Colorimetric method is based on the measurement of a pink-colored product at λmax = 505 nm while the fluorometric assay is based on the quenching of the fluorescence emission of Cu, N@CQDs at 440 nm after excitation at 370 nm. For the colorimetric method, the absorption intensity linearly increased over the concentration range 4.3-110.0 µM with LOD (S/N = 3) of 1.3 µM. For the fluorometric method, the emission intensity of Cu, N@CQDs linearly decreased upon addition of AMX in the concentration range 0.2-120.0 µM with a limit of detection (LOD, S/N = 3) of 0.06 µM. The proposed system was applied to the determination of AMX in different real samples such as pharmaceutical capsules, human serum, milk, and conduit water samples with recoveries in the range 95.8-104.1% and relative standard deviation (RSD %) less than 4.1%.


Assuntos
Pontos Quânticos , Amoxicilina , Ampirona , Carbono , Cobre , Humanos , Peróxido de Hidrogênio , Nitrogênio
4.
Int J Biol Macromol ; 140: 140-148, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31415858

RESUMO

A novel green magnetic molecularly imprinted solid phase extraction (MMI-SPE) for separation of memantine (MEM) from complicated matrices was proposed. The nanomaterial was synthesized via crosslinking of chitosan (CHIT) with [3-(2, 3-epoxypropoxy)-propyl] trimethoxysilane (EPPTMS) in presence of MEM as a template. The nanocomposites, in all steps, were characterized by SEM, FTIR and PXRD techniques. The adsorbed drug was removed from magnetic molecular imprinted polymer (MMIP) cavity by ethanol: acetic acid (8:2, v/v) and then, coupled with sodium 1, 2-naphthoquinone-4-sulphonate (NQS) in iodine/alkaline medium to yield highly fluorescent product, after reduction with potassium borohydride (KBH4). Variables affecting extraction of MEM from imprinted sites and its fluorometric analysis were studied. The linearity was achieved over concentration range of 1.84-95.0 ng mL-1 with LOD of 0.6 ng mL-1. The method was successfully applied for determination of MEM in its pharmaceutical tablets and human serum with recoveries of 100.8 ±â€¯3.0, 97.6 ±â€¯2.9, respectively.


Assuntos
Plásticos Biodegradáveis/química , Quitosana/química , Nanopartículas de Magnetita/química , Memantina/isolamento & purificação , Soro/química , Água/química , Química Verde , Humanos , Memantina/química , Impressão Molecular
5.
R Soc Open Sci ; 6(1): 181476, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800388

RESUMO

The aim of this paper is to develop sensitive, accurate, reproducible and robust RP-HPLC with fluorescence detection for estimation of donepezil (DZ) in rabbit plasma using silodosin as the internal standard (IS). The prepared samples were quantified on reversed phase column Luna C18(2) (150 × 4.6 mm i.d., 5 µm particle size) operated at room temperature using the mobile phase consisting of methanol: 0.1% acetic acid (50 : 50, v/v) at a flow rate of 1 ml min-1. The method was fully validated according to bioanalytical validation guidelines of FDA in terms of system suitability, selectivity, sensitivity, precision and stability. It was found that the increase in peak areas followed the increase of DZ concentration in the range of 2.56-200.00 ng ml-1 with LOD of 0.85 ng ml-1. The method was successfully applied for the determination of DZ in rabbit plasma using manual shaking dispersive liquid-liquid microextraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...