Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e15431, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151718

RESUMO

Focused bis-pyridinium based-ionic liquids were successfully synthesized through the quaternization of the selected 1,2-di(pyridin-4-yl)ethane followed by metathetical anion exchange. The synthesized pyridinium derivatives were fully characterized using various NMR-spectroscopic techniques including 1H, 13C, 11B, 31P and 19F NMR. The synthesized compounds were tested for their potential effect against Toxoplasma gondii. It was revealed that compound 5 had higher antiparasitic activity compared to other compounds. Parasitic reduction percentage reached 38, 50, 77 and 79 for groups III, IV, V and VI respectively in the liver with noticed distortion and deformation in tachyzoites' shape. Surprisingly there was no statistically significant difference between the synthesized compound 5 and the known anti-toxoplasmosis drug pyrimethamine. Histopathological study proved the effectiveness of the synthesized compound 5 on liver, spleen and brain tissues with observed better histological features compared to pyrimethamine treated group. The present investigation may pave the way to the possible use of compound 5 to replace the known drug pyrimethamine with better antiparasitic profile and fewer side effects.

2.
Pathogens ; 11(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015052

RESUMO

Meningitis caused by Klebsiella pneumoniae and Pseudomonas aeruginosa has lately become a prevalent cause of the central nervous system (CNS) infection. Bacterial invasion into the subarachnoid space prompts the releasing mechanism of chemokines and pro-inflammatory cytokines. The present study aimed to compare K. pneumoniae and P. aeruginosa meningitis concerning the memory, pro-inflammatory mediators and brain histopathological changes at different time intervals in adult Albino rats. The animals were sacrificed at three time intervals comprising 5, 10 and 15 days after meningitis induction. Cerebrospinal fluid (CSF) culture, relative brain weights, complete blood analysis, biochemical markers, levels of cytokine, chemokine and brain-derived neurotrophic factor (BDNF), neurotransmitter acetylcholine esterase (AChE) activity, and the brain histopathology of the infected rats in comparison to those in the control group were assessed. There was a significant increase in the levels of pro-inflammatory cytokines and chemokines including TNF-α, IL-1ß, IL-6 and AChE after 5 days of bacterial meningitis infection with both K. pneumoniae and P. aeruginosa. The histopathological analysis of the cerebral cortex in the P. aeruginosa meningitis model at different time intervals revealed abundant numbers of dilated and congested blood vessels with severe hemorrhage, cerebral infarct, intracellular and extracellular vacuoles, and gliosis. Fifteen days post infection, a significant reduction in the brain tissue weight was observed. The meningitis model employing P. aeruginosa exhibited more evident time-dependent severity compared to K. pneumoniae, which may advocate its validity as a simple and effective research model to study meningitis of the CNS. This model may be utilized for further investigation to ascertain the molecular and biological association between bacterial meningitis and the development of the pathophysiological hallmarks underlying Alzheimer's disease in preclinical and clinical setups. Clinical extrapolation based on studies employing animal disease models should be carefully interpreted.

3.
Biology (Basel) ; 11(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36009797

RESUMO

Bacterial pigments (e.g., melanin and carotenoids) are considered to be among the most important secondary metabolites due to their various pharmacological activities against cancer and microbial resistance. Different pigmented bacterial strains were isolated from soil samples from El Mahmoudiyah governance and screened for their antimicrobial activity. The most promising pigment producer was identified as Micrococcus lylae MW407006; furthermore, the produced pigment was identified as echinenone (ß-carotene pigment). The pigment production was optimized through a central composite statistical design to maximize the biomass production, pigment concentration, and the antimicrobial activity. It was revealed that the most significant fermentation parameters were the glucose (as a carbon source) and asparagine (as a nitrogen source) concentrations. Nano-echinenone was synthesized using the ball milling technique, characterized, and finally assessed for potential antimicrobial, antioxidant, and antitumor activities. The data revealed that the synthesized nano-echinenone had higher antimicrobial activity than the crude pigment. The cytotoxic potency of echinenone and nano-echinenone was investigated in different cell lines (normal and cancer cells). The inhibition of cell proliferation and induction of cell death was observed in Caco-2 and Hep-G2 cells. The data proved that nano-echinenone is a suitable candidate for use as a safe antimicrobial and anti-hepatocellular-carcinoma agent.

4.
Sci Rep ; 12(1): 6269, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428784

RESUMO

Ultra-small gold nanoparticles (Au-NPs) "≤ 10 nm diameters" have potent biomedical applications. Hence, the present study aimed to greenly synthesize ultra-small gold nanoparticles using Egyptian propolis extract. Different biological activities, in vivo bio-distribution and acute toxicity study were assessed. Results revealed that, Egyptian propolis extract can successfully synthesize the highly pure and stable ultra-small Au-NPs with average diameter 7.8 nm. In vitro antimicrobial and antimycobacterial activities revealed the powerful effect of the prepared Au-NPs. Moreover, the cytotoxic effect on human cancer cell lines revealed the potent inhibition of the cancer cells' proliferation with high reactive oxygen species-mediated apoptosis induction. In vivo bio-distribution and acute toxicity studies were performed (10 and 100 mg/kg doses) in male albino rats. The ultra-small Au-NPs showed low or no toxicity upon using the Au-NPs low dose. The mean area accumulation (%) of the Au-NPs was higher in the liver, kidney, and brain tissues (4.41, 2.96, and 0.3 times, respectively) treated with high Au-NPs dosage compared to those treated with the low dose. Surprisingly, Au-NP accumulation in brain tissue was observed in the glial cells only. Accordingly, the low dose (10 mg/kg) of Au-NPs can be used safely in a variety of biomedical applications.


Assuntos
Nanopartículas Metálicas , Própole , Animais , Antibacterianos/farmacologia , Ouro/farmacologia , Humanos , Masculino , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
5.
Bioinorg Chem Appl ; 2021: 8171786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422029

RESUMO

Titanium oxide nanoparticles (TiO2 NPs) have been attracting numerous research studies due to their activity; however, there is a growing concern about the corresponding toxicity. Here in the present study, titanium oxide nanoparticles were newly synthesized using propolis extract followed by antimicrobial activity, cytotoxicity assay using human cancer cell lines, and acute toxicity study. The physicochemical characterization of the newly synthesized TiO2 NPs had average size = 57.5 nm, PdI = 0.308, and zeta potential = -32.4 mV. Antimicrobial activity assessment proved the superior activity against Gram-positive compared to Gram-negative bacteria and yeast (lowest MIC values 8, 32, and 32, respectively). The newly synthesized TiO2 NPs showed a potent activity against the following human cancer cell lines: liver (HepG-2) (IC50 8.5 µg/mL), colon (Caco-2), and breast (MDA-MB 231) (IC50 11.0 and 18.7 µg/mL). In vivo acute toxicity study was conducted using low (10 mg/kg) and high (1000 mg/kg) doses of the synthesized TiO2 NPs in albino male rats. Biochemistry and histopathology of the liver, kidney, and brain proved the safety of the synthesized TiO2 NPs at low dose while at high dose, there was TiO2 NPs deposit in different vital organs except the cerebral tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...