Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 26(11): 1334-1341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885996

RESUMO

Objectives: Controlled drug delivery using nanotechnology enhances drug targeting at the site of interest and prevents drug dispersal throughout the body. This study focused on loading a poorly water-soluble drug tamoxifen (TMX) into silica nanoparticles (SNPs) and amine-functionalized mesoporous silica nanoparticles (NH2-SBA-15). Materials and Methods: SNPs were prepared according to the Stöber method and functionalized with an amine group using 3-aminopropyl triethoxysilane (APTES) through a one-pot synthesis method to produce amine-functionalized mesoporous silica nanoparticles (NH2-SBA-15). Characterization of both nanoparticles was performed using FT-IR, FE-SEM, CHN analysis, porosity tests (BET), and dynamic light scattering (DLS). Results: The results showed an average particle size of 103.7 nm for SNPs and 225.9 nm for NH2-SBA-15. Based on the BET results, the pore size of NH2-SBA-15 was about 5.4 nm. In both silica nanoparticles, drug release at pH=5.7 was greater than that of pH=7.4. However, Tamoxifen-loaded NH2-SBA-15 (TMX@NH2-SBA-15) indicated the highest drug release in the acidic medium among TMX-loaded SNPs (TMX@SNPs), perhaps due to the high columbic repulsion in the functionalized NH2-SBA-15 nanoparticles. Regarding cytotoxicity results against MCF-7 breast cancer cell lines, both TMX@SNPs and TMX@NH2-SBA-15 nanoparticles exhibited greater cytotoxicity compared to the free TMX as a positive control. Although TMX@SNPs had a small size and high loading capacity, the cytotoxic effects were higher than those of TMX@NH2-SBA-15. Conclusion: Amine functionalization of SNPs can improve the potential activity of these nanoparticles for target therapy.

2.
Chirality ; 34(10): 1371-1382, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35778873

RESUMO

Noscapine is an isolated compound from the opium poppy, with distinctive chiral structure and chemistry, interacts with other compounds due to having multiple π-acceptors, hydrogen bond acceptors, and ionic sites. Therefore, it has promising applicability for the enantioselective separation of a wide range of polar, acidic, basic, and neutral compounds. A new noscapine derivative chiral stationary phase (ND-CSP) has been synthesized by consecutive N-demethylation, reduction, and N-propargylation of noscapine followed by attachment of a solid epoxy-functionalized silica bed through the 1,3-dipolar Huisgen cycloaddition. The noscapine derivative-based stationary phase provides a considerable surface coverage, which is greater than some commercial CSPs and can validate better enantioresolution performance. The major advantages inherent to this chiral selector are stability, reproducibility after more than 200 tests, and substantial loading capacity. The characterization by Fourier transform infrared (FTIR) spectroscopy and elemental analysis indicated successful functionalization of the silica surface. Chromatographic method conditions like flow rate and mobile phase composition for enantioseparation of various compounds such as warfarin, propranolol, mandelic acid, and a sulfanilamide derivative were optimized. Comparing the experimental results with docking data revealed a clear correlation between the calculated binding energy of ND-CSP and each enantiomer with the resolution of enantiomer peaks.


Assuntos
Noscapina , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Dióxido de Silício/química , Estereoisomerismo
3.
Chirality ; 32(11): 1289-1298, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32797693

RESUMO

So far, no detailed view has been expressed regarding the interactions between vancomycin and racemic compounds including mandelic acid. In the current study, a chiral stationary phase was prepared by using 3-aminopropyltriethoxysilane and succinic anhydride to graft carboxylated silica microspheres and subsequently by activating the carboxylic acid group for vancomycin immobilization. Characterization by elemental analysis, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance, and thermogravimetric analysis demonstrated effective functionalization of the silica surface. R and S enantiomers of mandelic acid were separated by the synthetic vancomycin column. Finally, the interaction between vancomycin and R/S mandelic acid enantiomers was simulated by Auto-dock Vina. The binding energies of interactions between R and S enantiomers and vancomycin chiral stationary phase were different. In the most probable interaction, the difference in mandelic acid binding energy was approximately 0.2 kcal/mol. In addition, circular dichroism spectra of vancomycin interacting with R and S enantiomers showed different patterns. Therefore, R and S mandelic acid enantiomers may occupy various binding pockets and interact with different vancomycin functions. These observations emphasized the different retention of R and S mandelic acid enantiomers in vancomycin chiral column.


Assuntos
Ácidos Mandélicos/química , Ácidos Mandélicos/isolamento & purificação , Simulação de Acoplamento Molecular , Vancomicina/química , Conformação Molecular , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...