Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1239749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020912

RESUMO

The interplay between genetic transformations, biochemical communications, and physical interactions is crucial in cancer progression. Metastasis, a leading cause of cancer-related deaths, involves a series of steps, including invasion, intravasation, circulation survival, and extravasation. Mechanical alterations, such as changes in stiffness and morphology, play a significant role in all stages of cancer initiation and dissemination. Accordingly, a better understanding of cancer mechanobiology can help in the development of novel therapeutic strategies. Targeting the physical properties of tumours and their microenvironment presents opportunities for intervention. Advancements in imaging techniques and lab-on-a-chip systems enable personalized investigations of tumor biomechanics and drug screening. Investigation of the interplay between genetic, biochemical, and mechanical factors, which is of crucial importance in cancer progression, offers insights for personalized medicine and innovative treatment strategies.

2.
Mater Today Bio ; 23: 100821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37868949

RESUMO

The remarkable contractility and force generation ability exhibited by cancer cells empower them to overcome the resistance and steric hindrance presented by a three-dimensional, interconnected matrix. Cancer cells disseminate by actively remodelling and deforming their extracellular matrix (ECM). The process of tumour growth and its ECM remodelling have been extensively studied, but the effect of the cellular tumour microenvironment (TME) has been ignored in most studies that investigated tumour-cell-mediated ECM deformations and realignment. This study reports the integration of stromal cells in spheroid contractility assays that impacts the ECM remodelling and invasion abilities of cancer spheroids. To investigate this, we developed a novel multilayer in vitro assay that incorporates stromal cells and quantifies the contractile deformations that tumour spheroids exert on the ECM. We observed a negative correlation between the spheroid invasion potential and the levels of collagen deformation. The presence of stromal cells significantly increased cancer cell invasiveness and altered the cancer cells' ability to deform and realign collagen gel, due to upregulation of proinflammatory cytokines. Interestingly, this was observed consistently in both metastatic and non-metastatic cancer cells. Our findings contribute to a better understanding of the vital role played by the cellular TME in regulating the invasive outgrowth of cancer cells and underscore the potential of utilising matrix deformation measurements as a biophysical marker for evaluating invasiveness and informing targeted therapeutic opportunities.

3.
Sci Adv ; 9(32): eadg9781, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566656

RESUMO

Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Camundongos , Animais , Mecanotransdução Celular/fisiologia , Engenharia Tecidual/métodos , Morfogênese , Diferenciação Celular , Matriz Extracelular
4.
Biofabrication ; 15(3)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37201517

RESUMO

Endochondral ossification (EO) is an essential biological process than underpins how human bones develop, grow, and heal in the event of a fracture. So much is unknown about this process, thus clinical manifestations of dysregulated EO cannot be adequately treated. This can be partially attributed to the absence of predictivein vitromodels of musculoskeletal tissue development and healing, which are integral to the development and preclinical evaluation of novel therapeutics. Microphysiological systems, or organ-on-chip devices, are advancedin vitromodels designed for improved biological relevance compared to traditionalin vitroculture models. Here we develop a microphysiological model of vascular invasion into developing/regenerating bone, thereby mimicking the process of EO. This is achieved by integrating endothelial cells and organoids mimicking different stages of endochondral bone development within a microfluidic chip. This microphysiological model is able to recreate key events in EO, such as the changing angiogenic profile of a maturing cartilage analogue, and vascular induced expression of the pluripotent transcription factors SOX2 and OCT4 in the cartilage analogue. This system represents an advancedin vitroplatform to further EO research, and may also serve as a modular unit to monitor drug responses on such processes as part of a multi-organ system.


Assuntos
Células Endoteliais , Osteogênese , Humanos , Cartilagem/fisiologia , Osso e Ossos , Organoides , Dispositivos Lab-On-A-Chip
5.
Adv Sci (Weinh) ; 10(16): e2206554, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051804

RESUMO

Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.


Assuntos
Neoplasias , Migração Transendotelial e Transepitelial , Células Endoteliais , Endotélio , Actinas , Fenômenos Mecânicos
6.
Bioeng Transl Med ; 8(2): e10454, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925684

RESUMO

The human thymus is the site of T-cell maturation and induction of central tolerance. Hematopoietic stem cell (HSC)-derived progenitors are recruited to the thymus from the fetal liver during early prenatal development and from bone marrow at later stages and postnatal life. The mechanism by which HSCs are recruited to the thymus is poorly understood in humans, though mouse models have indicated the critical role of thymic stromal cells (TSC). Here, we developed a 3D microfluidic assay based on human cells to model HSC extravasation across the endothelium into the extracellular matrix. We found that the presence of human TSC consisting of cultured thymic epithelial cells (TEC) and interstitial cells (TIC) increases the HSC extravasation rates by 3-fold. Strikingly, incorporating TEC or TIC alone is insufficient to perturb HSC extravasation rates. Furthermore, we identified complex gene expressions from interactions between endothelial cells, TEC and TIC modulates the HSCs extravasation. Our results suggest that comprehensive signaling from the complex thymic microenvironment is crucial for thymus seeding and that our system will allow manipulation of these signals with the potential to increase thymocyte migration in a therapeutic setting.

7.
iScience ; 24(11): 103344, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34825134

RESUMO

Medical procedures can disperse infectious agents and spread disease. Particularly, dental procedures may pose a high risk of disease transmission as they use high-powered instruments operating within the oral cavity that may contain infectious microbiota or viruses. Here we assess the ability of powered dental devices in removing the biofluid films and identified mechanical, hydrodynamic, and aerodynamic forces as the main underlying mechanisms of removal and dispersal processes. Our results indicate that potentially infectious agents can be removed and dispersed immediately after dental instrument engagement with the adherent biofluid film, while the degree of their dispersal is rapidly depleted owing to the removal of the source and dilution by the coolant water. We found that droplets created by high-speed drill interactions typically travel ballistically, while aerosol-laden air tends to flow as a current over surfaces. Our mechanistic investigation offers plausible routes for reducing the spread of infection during invasive medical procedures.

8.
Expert Opin Drug Deliv ; 13(11): 1609-1623, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27216915

RESUMO

INTRODUCTION: One of the biggest impacts that the nanotechnology has made on medicine and biology, has been in the area of drug delivery systems (DDSs). Many drugs suffer from serious problems concerning insolubility, instability in biological environments, poor uptake into cells and tissues, sub-optimal selectivity for targets and unwanted side effects. Nanocarriers can be designed as DDSs to overcome many of these drawbacks. One of the most versatile building blocks to prepare these nanocarriers is the ubiquitous, readily available and inexpensive protein, serum albumin. Areas covered: This review covers the use of different types of albumin (human, bovine, rat, and chicken egg) to prepare nanoparticle and microparticle-based structures to bind drugs. Various methods have been used to modify the albumin structure. A range of targeting ligands can be attached to the albumin that can be recognized by specific cell receptors that are expressed on target cells or tissues. Expert opinion: The particular advantages of albumin used in DDSs include ready availability, ease of chemical modification, good biocompatibility, and low immunogenicity. The regulatory approvals that have been received for several albumin-based therapeutic agents suggest that this approach will continue to be successfully explored.


Assuntos
Albuminas/química , Sistemas de Liberação de Medicamentos , Nanoestruturas , Animais , Bovinos , Portadores de Fármacos/química , Humanos , Ligantes , Nanopartículas , Nanotecnologia , Preparações Farmacêuticas/administração & dosagem , Ratos
9.
Helicobacter ; 21(2): 143-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26222264

RESUMO

BACKGROUND: Proton-pump inhibitor (PPI) consumption does lead to false-negative results of Helicobacter pylori diagnostic tests such as biopsy culture and rapid urease test (RUT). MATERIALS AND METHODS: Helicobacter pylori isolates from 112 dyspeptic patients with (56.5%) or without (43.5%) PPI consumption were recruited for examining the negative effects of omeprazole (OMP), lansoprazole (LPZ), and pantoprazole (PAN) on H. pylori viability, morphology, and urease, in vitro. The effect of a sublethal concentration of OMP on bacterial features and their recovery after removal of OMP was also assessed. RESULTS: Of 112 culture-positive gastric biopsies, 87.5% were RUT positive and 12.5% RUT negative. There was a significant correlation between negative RUT results and PPI consumption (p < .05). OMP (minimum inhibitory concentration, MIC 32 µg/mL) and LPZ (MIC 8 µg/mL) inhibited the growth of 78.6% of H. pylori isolates. OMP and LPZ inhibited urease of 90.3% of isolates between 0 and 40 minutes and 54.4% between 20 and 40 minutes, respectively. PAN did not inhibit H. pylori growth and urease. Three 3-day (9 days) consecutive subcultures of H. pylori on brucella blood agar (BBA) supplemented with OMP resulted in reduced bacterial viability (1+), compared with control (4+), change of spiral morphology to coccoid, and reduction in pink color intensity in urea agar. Bacterial growth (1+), morphology, and urease test did not improve after the first 3-day and second 3-day (6 days) subcultures on BBA. However, relative recovery occurred after the third 3-day (9 days) subculture and complete recovery was observed after the fourth 3-day (12 days) subculture, as confluent growth (4+), 100% spiral cells, and strong urease test. CONCLUSION: Proton-pump Inhibitors exert transient negative effects on H. pylori viability, morphology, and urease test. Accordingly, cessation of PPI consumption at least 12 days before endoscopy could help avoiding false-negative results of H. pylori diagnostic tests.


Assuntos
Antibacterianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Inibidores da Bomba de Prótons/farmacologia , Urease/análise , 2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , Adulto , Idoso , Feminino , Helicobacter pylori/citologia , Helicobacter pylori/fisiologia , Humanos , Lansoprazol/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pessoa de Meia-Idade , Omeprazol/farmacologia , Pantoprazol , Adulto Jovem
10.
Ann Transl Med ; 3(1): 11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25705643

RESUMO

BACKGROUND: Culture, rapid urease test (RUT) and smear examination have been used as reliable methods for diagnosis of H. pylori infection. Accurate performance of these tests requires good quality biopsies with considerable number of bacterial cells. However, consumption of proton pump inhibitors (PPIs) affects growth and urease activity of H. pylori, leading to false negative results. In this study the efficacy of culture, RUT and smear examination was assessed and the effect of PPI consumption was evaluated. METHODS: Two antral biopsies from 530 dyspeptic patients with and without PPI consumption were used for RUT, culture and smear examination. Statistical analysis was used to determine the association between results of culture, RUT or smear examination and PPI consumption. Sensitivity and specificity of three tests were calculated by standard methods. RESULTS: H. pylori infection was detected in 40% of patients by culture, 48.3% by RUT and 21.1% by smear examination and the overall detection rate was 54%. A strong correlation was found between PPI consumption and negative results of culture and RUT (P<0.05) but not smear examination. The sensitivity of RUT was reduced as a result of PPI consumption. This reduction was more profound in 1-hr RUT (92.2% to 74.4%) compared with 24-hr RUT (93.9% to 81.6%). CONCLUSIONS: Prevalence of H. pylori was declined, compared with previous studies. This decrement could be due to false negative results of H. pylori diagnostic tests, among which culture and RUT are mostly affected by PPI. Accordingly, PPI consumption should be stopped before performance of endoscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...