Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(41): 25440-25451, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36250489

RESUMO

To gain insights into few layer (FL) van der Waals MoO3-xSx/MoS2-xOx heterostructures for photocatalytic applications, we analyze how the concentration (x) and location of anionic isovalent atom (S or O) substitutions impact their opto-electronic properties and high frequency dielectric constant profiles. By using density functional theory (DFT) calculations within the HSE06 functional, we show that the electronic band gap of FL MoO3-xSx decreases with increasing x, while the dielectric constant profile and absorption coefficient in the UV-vis range increase. The stronger band gap reductions are obtained when S-atoms are located in the internal bulk region of FL MoO3-xSx and in interaction with O-atoms of the neighboring layer. Moreover, the conduction and valence band (CB/VB) levels are shifted to higher energy values in the case of the edge location (external surface) of these S-atoms. Thanks to the determination of the thermodynamic diagrams of 4L MoO3-xSx and 6L MoS2-xOx, we propose optimal heterojunctions made of 4L MoO3-xSx with either single-layer (SL) or FL MoS2 with CB/VB levels compatible with a Z-scheme working principle and with potentials required for photocatalysis applications such as the photolysis of water into O2 and H2. This study combined with our previous theoretical investigations on bulk materials and SL provides a thorough analysis of SL-FL MoO3-xSx/MoS2 heterojunctions where the concentration and location of S-atoms in MoO3-xSx are key to design efficient materials for water photolysis.

2.
Nanotechnology ; 33(27)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35349997

RESUMO

In the latest experimental success, NbOI2two-dimensional (2D) crystals with anisotropic electronic and optical properties have been fabricated (Adv. Mater.33 (2021), 2101505). In this work inspired by the aforementioned accomplishment, we conduct first-principles calculations to explore the mechanical, electronic, and optical properties of NbOX2(X = Cl, Br, I) nanosheets. We show that individual layers in these systems are weakly bonded, with exfoliation energies of 0.22, 0.23, and 0.24 J m-2, for the isolation of the NbOCl2, NbOBr2,and NbOI2monolayers, respectively, distinctly lower than those of the graphene. The optoelectronic properties of the single-layer, bilayer, and bulk NbOCl2, NbOBr2,and NbOI2crystals are investigated via density functional theory calculations with the HSE06 approach. Our results indicate that the layered bulk NbOCl2, NbOBr2,and NbOI2crystals are indirect gap semiconductors, with band gaps of 1.79, 1.69, and 1.60 eV, respectively. We found a slight increase in the electronic gap for the monolayer and bilayer systems due to electron confinement at the nanoscale. Our results show that the monolayer and bilayer of these novel 2D compounds show suitable valence and conduction band edge positions for visible-light-driven water splitting reactions. The first absorption peaks of these novel monolayers along the in-plane polarization are located in the visible range of light which can be a promising feature to design advanced nanoelectronics. We found that the studied 2D systems exhibit highly anisotropic mechanical and optical properties. The presented first-principles results provide a comprehensive vision about direction-dependent mechanical and optical properties of NbOX2(X = Cl, Br, I) nanosheets.

4.
Nanoscale ; 14(11): 4324-4333, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35253027

RESUMO

Carbon nitride nanomembranes are currently among the most appealing two-dimensional (2D) materials. As a nonstop endeavor in this field, a novel 2D fused aromatic nanoporous network with a C5N stoichiometry has been most recently synthesized. Inspired by this experimental advance and exciting physics of nanoporous carbon nitrides, herein we conduct extensive density functional theory calculations to explore the electronic, optical and photocatalytic properties of the C5N monolayer. In order to examine the dynamic stability and evaluate the mechanical and heat transport properties under ambient conditions, we employ state of the art methods on the basis of machine-learning interatomic potentials. The C5N monolayer is found to be a direct band gap semiconductor, with a band-gap of 2.63 eV according to the HSE06 method. The obtained results confirm the dynamic stability, remarkable tensile strengths over 10 GPa and a low lattice thermal conductivity of ∼9.5 W m-1 K-1 for the C5N monolayer at room temperature. The first absorption peak of the single-layer C5N along the in-plane polarization is predicted to appear in the visible range of light. With a combination of high carrier mobility, appropriate band edge positions and strong absorption of visible light, the C5N monolayer might be an appealing candidate for photocatalytic water splitting reactions. The presented results provide an extensive understanding concerning the critical physical properties of the C5N nanosheets and also highlight the robustness of machine-learning interatomic potentials in the exploration of complex physical behaviors.

5.
ACS Appl Mater Interfaces ; 13(30): 36465-36474, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309377

RESUMO

Two-dimensional (2D) van der Waals (vdW) heterostructures currently have attracted much attention in widespread research fields where semiconductor materials are key. With the aim of gaining insights into photocatalytic materials, we use density functional theory (DFT) calculations within the HSE06 functional to analyze the evolution of optoelectronic properties and high-frequency dielectric constant profiles of various 2D MoO3-xSx/MoS2 heterostructures modified by chemical and physical approaches. Although the MoO3/MoS2 heterostructure is a type III heterojunction associated with a metallic character, we found that exchanging the terminal oxo atoms of the MoO3-xSx single layer (SL) with sulfur enables shifting its CB position above the VB position of the MoS2 SL. This trend gives rise to a type II heterojunction where the band gap and charge transfer within the two layers are driven continuously by the S concentration in the MoO3-xSx SL. This fine-tuning leads to a versatile type II heterostructure proposed to provide a direct Z-scheme system valuable for photocatalytic water splitting.

6.
ACS Omega ; 6(14): 9433-9441, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869923

RESUMO

Very recently, a new class of the multicationic and -anionic entropy-stabilized chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula has been successfully fabricated and characterized experimentally [Zihao Deng et al., Chem. Mater. 32, 6070 (2020)]. Motivated by the recent experiment, herein, we perform density functional theory-based first-principles calculations in order to investigate the structural, mechanical, electronic, optical, and thermoelectric properties. The calculations of the cohesive energy and elasticity parameters indicate that the alloy is stable. Also, the mechanical study shows that the alloy has a brittle nature. The GeSnPbSSeTe alloy is a semiconductor with a direct band gap of 0.4 eV (0.3 eV using spin-orbit coupling effect). The optical analysis illustrates that the first peak of Im(ε) for the GeSnPbSSeTe alloy along all polarization directions is located in the visible range of the spectrum which renders it a promising material for applications in optical and electronic devices. Interestingly, we find an optically anisotropic character of this system which is highly desirable for the design of polarization-sensitive photodetectors. We have accurately predicted the thermoelectric coefficients and have calculated a large power factor value of 3.7 × 1011 W m-1 K-2 s-1 for p-type. The high p-type power factor is originated from the multiple valleys near the valence band maxima. The anisotropic results of the optical and transport properties are related to the specific tetragonal alloy unit cell.

7.
ACS Omega ; 5(31): 19919, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803088

RESUMO

[This corrects the article DOI: 10.1021/acsomega.9b03845.].

8.
ACS Omega ; 5(2): 1270-1276, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31984285

RESUMO

Selectivity in heterogeneous catalysis is essential while being the most difficult parameters to obtain from theoretical simulations. Although theory holds the key for catalytic design, in the search of complex reaction networks, intermediates are considered static and different configurations for addition reactions are not considered. Here, we present the crucial role of intermediate dynamics to understand reaction selectivity of heterogeneous catalysts by studying the dynamic properties. The hydrogenation of two different intermediates hydroperoxide (OOH) and vinyl (HCCH2) is crucial to in the direct synthesis of water peroxide and alkyne semi-hydrogenation are taken as examples on the bare and alloyed surfaces. For them, the reaction network is studied by density functional theory coupled to molecular dynamics to present the role of rotations and how they affect paths for the addition of atomic hydrogen to lead to the products. In summary, the thermodynamic selectivity can be mapped to the dynamic control in the kinetics of the process.

9.
RSC Adv ; 10(51): 30398-30405, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516017

RESUMO

Herein, by using first-principles calculations, we demonstrate a two-dimensional (2D) of XSb (X = Si, Ge, and Sn) monolayers that have a honey-like crystal structure. The structural, mechanical, electronic, thermoelectric efficiency, and optical properties of XSb monolayers are studied. Ab initio molecular dynamic simulations and phonon dispersion calculations suggests their good thermal and dynamical stabilities. The mechanical properties of XSb monolayers shows that the monolayers are considerably softer than graphene, and their in-plane stiffness decreases from SiSb to SnSb. Our results shows that the single layers of SiSb, GeSb and SnSb are semiconductor with band gap of 1.48, 0.77 and 0.73 eV, respectively. The optical analysis illustrate that the first absorption peaks of the SiSb, GeSb and SnSb monolayers along the in-plane polarization are located in visible range of light which may serve as a promising candidate to design advanced optoelectronic devices. Thermoelectric properties of the XSb monolayers, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated as a function of doping level at temperatures of 300 K and 800 K. Between the studied two-dimensional materials (2DM), SiSb single layer may be the most promising candidate for application in the thermoelectric generators.

11.
Nat Commun ; 9(1): 2634, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980682

RESUMO

Ensemble control has been intensively pursued for decades to identify sustainable alternatives to the Lindlar catalyst (PdPb/CaCO3) applied for the partial hydrogenation of alkynes in industrial organic synthesis. Although the geometric and electronic requirements are known, a literature survey illustrates the difficulty of transferring this knowledge into an efficient and robust catalyst. Here, we report a simple treatment of palladium nanoparticles supported on graphitic carbon nitride with aqueous sodium sulfide, which directs the formation of a nanostructured Pd3S phase with controlled crystallographic orientation, exhibiting unparalleled performance in the semi-hydrogenation of alkynes in the liquid phase. The exceptional behavior is linked to the multifunctional role of sulfur. Apart from defining a structure integrating spatially-isolated palladium trimers, the active ensembles, the modifier imparts a bifunctional mechanism and weak binding of the organic intermediates. Similar metal trimers are also identified in Pd4S, evidencing the pervasiveness of these selective ensembles in supported palladium sulfides.

12.
Nanoscale ; 10(8): 3759-3768, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29411815

RESUMO

Two-dimensional (2D) structures of boron atoms, so-called borophene, have recently attracted remarkable attention. In a recent exciting experimental study, a hydrogenated borophene structure was realized. Motivated by this success, we conducted extensive first-principles calculations to explore the mechanical, thermal conduction, electronic and optical responses of borophene hydride. The mechanical response of borophene hydride was found to be anisotropic, with an elastic modulus of 131 N m-1 and a high tensile strength of 19.9 N m-1 along the armchair direction. Notably, it was shown that by applying mechanical loading the metallic electronic character of borophene hydride can be altered to direct band-gap semiconducting, very appealing for application in nanoelectronics. The absorption edge of the imaginary part of the dielectric function was found to occur in the visible range of light for parallel polarization. Finally, it was estimated that this novel 2D structure at room temperature can exhibit high thermal conductivities of 335 W mK-1 and 293 W mK-1 along the zigzag and armchair directions, respectively. Our study confirms that borophene hydride shows an outstanding combination of interesting mechanical, electronic, optical and thermal conduction properties, which are promising for the design of novel nanodevices.

13.
Nanotechnology ; 28(11): 115705, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28205509

RESUMO

Transition metal carbides include a wide variety of materials with attractive properties that are suitable for numerous and diverse applications. A most recent experimental advance could provide a path toward the successful synthesis of large-area and high-quality ultrathin Mo2C membranes with superconducting properties. In the present study, we used first-principles density functional theory calculations to explore the mechanical and optical response of single-layer and free-standing Mo2C. Uniaxial tensile simulations along the armchair and zigzag directions were conducted and we found that while the elastic properties are close along various loading directions, the nonlinear regimes in stress-strain curves are considerably different. We found that Mo2C sheets present negative Poisson's ratio and thus can be categorized as an auxetic material. Our simulations also reveal that Mo2C films retain their metallic electronic characteristic upon uniaxial loading. We found that for Mo2C nanomembranes the dielectric function becomes anisotropic along in-plane and out-of-plane directions. Our findings can be useful for the practical application of Mo2C sheets in nanodevices.

14.
Angew Chem Int Ed Engl ; 56(7): 1775-1779, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-27981710

RESUMO

Ligand-modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2 O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state-of-the-art bimetallic catalysts (HHDMA=C20 H46 NO5 P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over-hydrogenation. These findings demonstrate the importance of understanding substrate-ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...