Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 939, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097635

RESUMO

Monoterpenoid indole alkaloid (MIA) biosynthesis in Catharanthus roseus is a paragon of the spatiotemporal complexity achievable by plant specialized metabolism. Spanning a range of tissues, four cell types, and five cellular organelles, MIA metabolism is intricately regulated and organized. This high degree of metabolic differentiation requires inter-cellular and organellar transport, which remains understudied. Here, we have characterized a vacuolar importer of secologanin belonging to the multidrug and toxic compound extrusion (MATE) family, named CrMATE1. Phylogenetic analyses of MATEs suggested a role in alkaloid transport for CrMATE1, and in planta silencing in two varieties of C. roseus resulted in a shift in the secoiridoid and MIA profiles. Subcellular localization of CrMATE1 confirmed tonoplast localization. Biochemical characterization was conducted using the Xenopus laevis oocyte expression system to determine substrate range, directionality, and rate. We can confirm that CrMATE1 is a vacuolar importer of secologanin, translocating 1 mM of substrate within 25 min. The transporter displayed strict directionality and specificity for secologanin and did not accept other secoiridoid substrates. The unique substrate-specific activity of CrMATE1 showcases the utility of transporters as gatekeepers of pathway flux, mediating the balance between a defense arsenal and cellular homeostasis.


Assuntos
Catharanthus , Proteínas de Plantas , Alcaloides de Triptamina e Secologanina , Vacúolos , Catharanthus/metabolismo , Catharanthus/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vacúolos/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Animais , Filogenia , Xenopus laevis/metabolismo , Transporte Biológico , Oócitos/metabolismo , Glucosídeos Iridoides
2.
New Phytol ; 240(2): 757-769, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37518950

RESUMO

Mitragynine, an analgesic alkaloid from the plant Mitragyna speciosa (kratom), offers a safer alternative to clinical opioids such as morphine, owing to its more favorable side effect profile. Although kratom has been traditionally used for stimulation and pain management in Southeast Asia, the mitragynine biosynthesis pathway has remained elusive. We embarked on a search for mitragynine biosynthetic genes from the transcriptomes of kratom and other members of the Rubiaceae family. We studied their functions in vitro and in vivo. Our investigations led to the identification of several reductases and an enol methyltransferase that forms a new clade within the SABATH methyltransferase family. Furthermore, we discovered a methyltransferase from Hamelia patens (firebush), which catalyzes the final step. With the tryptamine 4-hydroxylase from the psychedelic mushroom Psilocybe cubensis, we accomplished the four-step biosynthesis for mitragynine and its stereoisomer, speciogynine in both yeast and Escherichia coli when supplied with tryptamine and secologanin. Although we have yet to pinpoint the authentic hydroxylase and methyltransferase in kratom, our discovery completes the mitragynine biosynthesis. Through these breakthroughs, we achieved the microbial biosynthesis of kratom opioids for the first time. The remarkable enzyme promiscuity suggests the possibility of generating derivatives and analogs of kratom opioids in heterologous systems.


Assuntos
Mitragyna , Alcaloides de Triptamina e Secologanina , Analgésicos Opioides , Mitragyna/genética , Extratos Vegetais , Triptaminas , Oxigenases de Função Mista
3.
Metab Eng Commun ; 16: e00215, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36569379

RESUMO

With over 3000 reported structures, monoterpenoid indole alkaloids (MIAs) constitute one of the largest alkaloid groups in nature, including the clinically important anticancer drug vinblastine and its semi-synthetic derivatives from Catharanthus roseus (Madagascar's periwinkle). With the elucidation of the complete 28-step biosynthesis for anhydrovinblastine, it is possible to investigate the heterologous production of vinblastine and other medicinal MIAs. In this study, we successfully expressed the flavoenzyme O-acetylstemmadenine oxidase in Saccharomyces cerevisiae (baker's yeast) by signal peptide modification, which is a vinblastine biosynthetic gene that has not been functionally expressed in this system. We also reported the simultaneous integration of ∼18 kb MIA biosynthetic gene cassettes as single copies into four genomic loci of baker's yeast by CRISPR-Cas9, which enabled the biosynthesis of vinblastine precursors catharanthine and tabersonine from the feedstocks secologanin and tryptamine. We further demonstrated the biosynthesis of fluorinated and hydroxylated catharanthine and tabersonine derivatives using our yeasts, which showed that the MIA biosynthesis accommodates unnatural substrates, and the system can be further explored to produce other complex MIAs.

4.
Nat Commun ; 13(1): 3335, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680936

RESUMO

The Madagascar's periwinkle is the model plant for studies of plant specialized metabolism and monoterpenoid indole alkaloids (MIAs), and an important source for the anticancer medicine vinblastine. The elucidation of entire 28-step biosynthesis of vinblastine allowed further investigations for the formation of other remarkably complex bioactive MIAs. In this study, we describe the discovery and characterization of vindolinine synthase, a Fe(II)/α-ketoglutarate-dependent (Fe/2OG) dioxygenase, that diverts assembly of tabersonine to vinblastine toward the formation of three alternatively cyclized MIAs: 19S-vindolinine, 19R-vindolinine, and venalstonine. Vindolinine synthase catalyzes a highly unusual, redox-neutral reaction to form a radical from dehydrosecodine, which is further cyclized by hydrolase 2 to form the three MIA isomers. We further show the biosynthesis of vindolinine epimers from tabersonine using hydrolase 2 catalyzed reverse cycloaddition. While the occurrence of vindolinines is rare in nature, the more widely found venalstonine derivatives are likely formed from similar redox-neutral reactions by homologous Fe/2OG dioxygenases.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Catharanthus/metabolismo , Compostos Ferrosos/metabolismo , Regulação da Expressão Gênica de Plantas , Hidrolases/metabolismo , Oxirredução , Proteínas de Plantas/genética , Alcaloides de Triptamina e Secologanina/metabolismo , Vimblastina/análogos & derivados , Vimblastina/metabolismo
5.
Methods Mol Biol ; 2505: 69-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732937

RESUMO

The plant Catharanthus roseus is well known for its spatial separation of iridoid and monoterpenoid indole alkaloid (MIA) biosynthesis at both intracellular and intercellular levels, collectively suggested by RNA in situ hybridization, enzymatic and transcriptomic studies using leaf epidermis, and fluorescent protein tagging studies. Although documented in other plant species, the long-distance transport of iridoid glycosides, such as secologanin, has not been known in C. roseus until a recent study suggested that secologanin is transported from root to shoot, by grafting low iridoid/MIA mutant scions onto wild-type stock plants. This chapter describes the in vitro cultivation of C. roseus plants and grafting techniques to enable studies concerning iridoid/MIA transport between organs. The iridoid and MIA analysis methods are also provided.


Assuntos
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Iridoides/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
6.
Methods Mol Biol ; 2505: 181-190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732945

RESUMO

Decades of research on the medicinal plant Catharanthus roseus have led to the complete elucidation of the 29-step pathway for the biosynthesis of the anticancer drug vinblastine from geraniol and tryptophan precursors. Several approaches have been used to identify the enzymes involved in this iconic and remarkably complex pathway. This chapter describes the use of the classic ethyl methanesulfonate (EMS) mutagenesis to create a selfed M2 mutant population, which can be rapidly screened to select mutants with altered monoterpenoid indole alkaloid (MIA) biosynthesis with a simple, high-throughput thin-layer chromatography (TLC)-based screening strategy. This TLC-based MIA screening has led to the discovery and characterization of three enzymes responsible for vinblastine biosynthesis.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Catharanthus/genética , Catharanthus/metabolismo , Cromatografia em Camada Fina , Metanossulfonato de Etila , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Vimblastina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA