Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Bioprocess ; 11(1): 53, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767701

RESUMO

Hypertension is a major global public health issue, affecting quarter of adults worldwide. Numerous synthetic drugs are available for treating hypertension; however, they often come with a higher risk of side effects and long-term therapy. Modern formulations with active phytoconstituents are gaining popularity, addressing some of these issues. This study aims to discover novel antihypertensive compounds in Cassia fistula, Senna alexandrina, and Cassia occidentalis from family Fabaceae and understand their interaction mechanism with hypertension targeted genes, using network pharmacology and molecular docking. Total 414 compounds were identified; initial screening was conducted based on their pharmacokinetic and ADMET properties, with a particular emphasis on adherence to Lipinski's rules. 6 compounds, namely Germichrysone, Benzeneacetic acid, Flavan-3-ol, 5,7,3',4'-Tetrahydroxy-6, 8-dimethoxyflavon, Dihydrokaempferol, and Epiafzelechin, were identified as effective agents. Most of the compounds found non-toxic against various indicators with greater bioactivity score. 161 common targets were obtained against these compounds and hypertension followed by compound-target network construction and protein-protein interaction, which showed their role in diverse biological system. Top hub genes identified were TLR4, MMP9, MAPK14, AKT1, VEGFA and HSP90AA1 with their respective associates. Higher binding affinities was found with three compounds Dihydrokaempferol, Flavan-3-ol and Germichrysone, -7.1, -9.0 and -8.0 kcal/mol, respectively. The MD simulation results validate the structural flexibility of two complexes Flavan-MMP9 and Germich-TLR4 based on no. of hydrogen bonds, root mean square deviations and interaction energies. This study concluded that C. fistula (Dihydrokaempferol, Flavan-3-ol) and C. occidentalis (Germichrysone) have potential therapeutic active constituents to treat hypertension and in future novel drug formulation.

2.
Food Chem X ; 21: 101157, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38317670

RESUMO

The objective of the study was to extend shelf life of Vitis vinifera (L.) by the application of green synthesized Magnesium oxide nanoparticles. Aqueous leaf extract of Azadirachta indica A. juss. and various concentrations of 20 mM, 30 mM, and 40 mM solutions of Magnesium nitrate hexa hydrate salt, were used to synthesize nanoparticles of different size. The characterization of nanoparticles was done by SEM, XRD, and UV. The antimicrobial activity of MgO NPs was evaluated for Azospirilum brasilense and Trichoderma viride, representative of microbes responsible for V. vinifera fruits spoilage. Nanoparticles with crystal size of 28.60 nm has more pronounced effect against microbes. The Shelf life of the Vitis vinifera L. was evaluated by application of 28.60 nm MgO NPs through T1 (nanoparticles coated on packaging), T2 (nanoparticles coated directly on fruit) at 4 °C and 25 °C. T1 at 4 °C was effective to extend the shelf life of Vitis vinifera (L) for an average of 20 days.

3.
Food Sci Nutr ; 11(6): 3464-3484, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324842

RESUMO

Fragaria × ananassa Duch. (Strawberry) fruit is susceptible to postharvest diseases, thus decrease in quality attributes, such as physiological and biochemical properties leads to decrease in shelf life. The objective of the present study was to check the effect of Selenium NP's and packaging conditions on the shelf life of strawberry (Fragaria × ananassa Duch) fruits. The shelf life was observed with 4 days intervals and examined for characteristics such as physiological weight loss, moisture content, percentage decay loss, peroxidase, catalase, and DPPH radical scavenging. The quality change of postharvest Fragaria × ananassa Duch. was monitored by the application of selenium nanoparticles (T1 plant extract in 10 mM salt solution, T2 plant extract in 30 mM salt solution, T3 plant extract in 40 mM salt solution, T4 distilled water; control) in different packaging materials (plastic bags, cardboard, and brown paper) at different storage conditions (6°C and 25°C). 10 mM, 20 mM, and 30 mM solution of sodium selenite salt, prepared from 1 M stock solution. Selenium nanoparticles were synthesized using Cassia fistula L. extract and sodium selenite salt solution. Polyvinyl alcohol (PVA) was used as a stabilizer. The nanoparticles were characterized through UV-visible spectroscopy and X-Ray diffractometer (XRD). It was observed that the strawberry Fragaria × ananassa Duch. Treated with T1 (CFE and 10 mM salt solution) stored in plastic packaging at ±6°C showed the best physiological parameters and hence the treatment is recommended for storage without affecting the quality of strawberry fruit up to 16 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA