Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669296

RESUMO

Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Dinâmica Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácidos Graxos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ciclo do Ácido Cítrico , Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Humanos
2.
Elife ; 122023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744865

RESUMO

Female Aedes aegypti mosquitoes impose a severe global public health burden as vectors of multiple viral pathogens. Under optimal environmental conditions, Aedes aegypti females have access to human hosts that provide blood proteins for egg development, conspecific males that provide sperm for fertilization, and freshwater that serves as an egg-laying substrate suitable for offspring survival. As global temperatures rise, Aedes aegypti females are faced with climate challenges like intense droughts and intermittent precipitation, which create unpredictable, suboptimal conditions for egg-laying. Here, we show that under drought-like conditions simulated in the laboratory, females retain mature eggs in their ovaries for extended periods, while maintaining the viability of these eggs until they can be laid in freshwater. Using transcriptomic and proteomic profiling of Aedes aegypti ovaries, we identify two previously uncharacterized genes named tweedledee and tweedledum, each encoding a small, secreted protein that both show ovary-enriched, temporally-restricted expression during egg retention. These genes are mosquito-specific, linked within a syntenic locus, and rapidly evolving under positive selection, raising the possibility that they serve an adaptive function. CRISPR-Cas9 deletion of both tweedledee and tweedledum demonstrates that they are specifically required for extended retention of viable eggs. These results highlight an elegant example of taxon-restricted genes at the heart of an important adaptation that equips Aedes aegypti females with 'insurance' to flexibly extend their reproductive schedule without losing reproductive capacity, thus allowing this species to exploit unpredictable habitats in a changing world.


Assuntos
Aedes , Culex , Animais , Masculino , Feminino , Humanos , Secas , Proteômica , Mosquitos Vetores , Sêmen
3.
J Cell Sci ; 133(24)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33177075

RESUMO

Eukaryotic cells have evolved organelles that allow the compartmentalization and regulation of metabolic processes. Knowledge of molecular mechanisms that allow temporal and spatial organization of enzymes within organelles is therefore crucial for understanding eukaryotic metabolism. Here, we show that the yeast malate dehydrogenase 2 (Mdh2) is dually localized to the cytosol and to peroxisomes and is targeted to peroxisomes via association with Mdh3 and a Pex5-dependent piggybacking mechanism. This dual localization of Mdh2 contributes to our understanding of the glyoxylate cycle and provides a new perspective on compartmentalization of cellular metabolism, which is critical for the perception of metabolic disorders and aging.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sequência de Aminoácidos , Citosol/metabolismo , Glioxilatos , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Elife ; 72018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29869985

RESUMO

Cellular redox status affects diverse cellular functions, including proliferation, protein homeostasis, and aging. Thus, individual differences in redox status can give rise to distinct sub-populations even among cells with identical genetic backgrounds. Here, we have created a novel methodology to track redox status at single cell resolution using the redox-sensitive probe Grx1-roGFP2. Our method allows identification and sorting of sub-populations with different oxidation levels in either the cytosol, mitochondria or peroxisomes. Using this approach, we defined a redox-dependent heterogeneity of yeast cells and characterized growth, as well as proteomic and transcriptomic profiles of distinctive redox subpopulations. We report that, starting in late logarithmic growth, cells of the same age have a bi-modal distribution of oxidation status. A comparative proteomic analysis between these populations identified three key proteins, Hsp30, Dhh1, and Pnc1, which affect basal oxidation levels and may serve as first line of defense proteins in redox homeostasis.


Assuntos
Proteoma/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos , Transcriptoma , Citosol/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Mitocôndrias/metabolismo , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
5.
Nat Commun ; 9(1): 1761, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720625

RESUMO

The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in ß-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease.


Assuntos
Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Peroxinas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Front Mol Neurosci ; 10: 101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503130

RESUMO

Caenorhabditis elegans somatic protein homeostasis (proteostasis) is actively remodeled at the onset of reproduction. This proteostatic collapse is regulated cell-nonautonomously by signals from the reproductive system that transmit the commitment to reproduction to somatic cells. Here, we asked whether the link between the reproductive system and somatic proteostasis could be uncoupled by activating downstream effectors in the gonadal longevity cascade. Specifically, we examined whether over-expression of lipl-4 (lipl-4(oe)), a target gene of the gonadal longevity pathway, or increase in arachidonic acid (AA) levels, associated with lipl-4(oe), modulated proteostasis and reproduction. We found that lipl-4(oe) rescued somatic proteostasis and postponed the onset of aggregation and toxicity in C. elegans models of polyglutamine (polyQ) diseases. However, lipl-4(oe) also disrupted fatty acid transport into developing oocytes and reduced reproductive success. In contrast, diet supplementation of AA recapitulated lipl-4(oe)-mediated proteostasis enhancement in wild type animals but did not affect the reproductive system. Thus, the gonadal longevity pathway mediates a trade-off between somatic maintenance and reproduction, in part by regulating the expression of genes, such as lipl-4, with inverse effects on somatic maintenance and reproduction. We propose that AA could uncouple such germline to soma crosstalk, with beneficial implications protein misfolding diseases.

7.
Dev Cell ; 39(4): 395-409, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27875684

RESUMO

Membrane contact sites enable interorganelle communication by positioning organelles in close proximity using molecular "tethers." With a growing understanding of the importance of contact sites, the hunt for new contact sites and their tethers is in full swing. Determining just what is a tether has proven challenging. Here, we aim to delineate guidelines that define the prerequisites for categorizing a protein as a tether. Setting this gold standard now, while groups from different disciplines are beginning to explore membrane contact sites, will enable efficient cooperation in the growing field and help to realize a great collaborative opportunity to boost its development.


Assuntos
Membrana Celular/metabolismo , Animais , Fusão de Membrana , Mutação/genética , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Biologia Sintética
8.
Biochim Biophys Acta ; 1863(5): 1061-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26384874

RESUMO

In order to optimize their multiple cellular functions, peroxisomes must collaborate and communicate with the surrounding organelles. A common way of communication between organelles is through physical membrane contact sites where membranes of two organelles are tethered, facilitating exchange of small molecules and intracellular signaling. In addition contact sites are important for controlling processes such as metabolism, organelle trafficking, inheritance and division. How peroxisomes rely on contact sites for their various cellular activities is only recently starting to be appreciated and explored and the extent of peroxisomal communication, their contact sites and their functions are less characterized. In this review we summarize the identified peroxisomal contact sites, their tethering complexes and their potential physiological roles. Additionally, we highlight some of the preliminary evidence that exists in the field for unexplored peroxisomal contact sites.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Retículo Endoplasmático/química , Regulação da Expressão Gênica , Humanos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Peroxinas , Peroxissomos/química , Pichia/genética , Pichia/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
9.
Curr Genomics ; 15(2): 122-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24822030

RESUMO

Protein folding and clearance networks sense and respond to misfolded and aggregation-prone proteins by activating cytoprotective cell stress responses that safeguard the proteome against damage, maintain the health of the cell, and enhance lifespan. Surprisingly, cellular proteostasis undergoes a sudden and widespread failure early in Caenorhabditis elegans adulthood, with marked consequences on proteostasis functions later in life. These changes in the regulation of quality control systems, such as chaperones, the ubiquitin proteasome system and cellular stress responses, are controlled cell-nonautonomously by the proliferation of germline stem cells. Here, we review recent studies examining changes in proteostasis upon transition to adulthood and how proteostasis is modulated by reproduction onset, focusing on C. elegans. Based on these and our own findings, we propose that the regulation of quality control systems is actively remodeled at the point of transition between development and adulthood to influence the subsequent course of aging.

10.
Aging Cell ; 12(5): 814-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23734734

RESUMO

All cells rely on highly conserved protein folding and clearance pathways to detect and resolve protein damage and to maintain protein homeostasis (proteostasis). Because age is associated with an imbalance in proteostasis, there is a need to understand how protein folding is regulated in a multicellular organism that undergoes aging. We have observed that the ability of Caenorhabditis elegans to maintain proteostasis declines sharply following the onset of oocyte biomass production, suggesting that a restricted protein folding capacity may be linked to the onset of reproduction. To test this hypothesis, we monitored the effects of different sterile mutations on the maintenance of proteostasis in the soma of C. elegans. We found that germline stem cell (GSC) arrest rescued protein quality control, resulting in maintenance of robust proteostasis in different somatic tissues of adult animals. We further demonstrated that GSC-dependent modulation of proteostasis requires several different signaling pathways, including hsf-1 and daf-16/kri-1/tcer-1, daf-12, daf-9, daf-36, nhr-80, and pha-4 that differentially modulate somatic quality control functions, such that each signaling pathway affects different aspects of proteostasis and cannot functionally complement the other pathways. We propose that the effect of GSCs on the collapse of proteostasis at the transition to adulthood is due to a switch mechanism that links GSC status with maintenance of somatic proteostasis via regulation of the expression and function of different quality control machineries and cellular stress responses that progressively lead to a decline in the maintenance of proteostasis in adulthood, thereby linking reproduction to the maintenance of the soma.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Células Germinativas/citologia , Deficiências na Proteostase/patologia , Células-Tronco/citologia , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Feminino , Células Germinativas/metabolismo , Longevidade , Masculino , Dobramento de Proteína , Deficiências na Proteostase/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
11.
J Vis Exp ; (82): e50840, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24378578

RESUMO

The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Modelos Animais , Fatores Etários , Animais , Homeostase , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...