Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6592, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852960

RESUMO

Limited data is available on the effect of vaccination and previous virus exposure on the nature of SARS-CoV-2 transmission and immune-pressure on variants. To understand the impact of pre-existing immunity on SARS-CoV-2 airborne transmission efficiency, we perform a transmission chain experiment using naïve, intranasally or intramuscularly AZD1222 vaccinated, and previously infected hamsters. A clear gradient in transmission efficacy is observed: Transmission in hamsters vaccinated via the intramuscular route was reduced over three airborne chains (approx. 60%) compared to naïve animals, whereas transmission in previously infected hamsters and those vaccinated via the intranasal route was reduced by 80%. We also find that the Delta B.1.617.2 variant outcompeted Omicron B.1.1.529 after dual infection within and between hosts in naïve, vaccinated, and previously infected transmission chains, yet an increase in Omicron B.1.1.529 competitiveness is observed in groups with pre-existing immunity against Delta B.1.617.2. This correlates with an increase in the strength of the humoral response against Delta B.1.617.2, with the strongest response seen in previously infected animals. These data highlight the continuous need to improve vaccination strategies and address the additional evolutionary pressure pre-existing immunity may exert on SARS-CoV-2.


Assuntos
COVID-19 , Vacinas , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , SARS-CoV-2
2.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36032963

RESUMO

It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.

3.
bioRxiv ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35982658

RESUMO

Omicron has demonstrated a competitive advantage over Delta in vaccinated people. To understand this, we designed a transmission chain experiment using naïve, intranasally (IN) or intramuscularly (IM) vaccinated, and previously infected (PI) hamsters. Vaccination and previous infection protected animals from disease and virus replication after Delta and Omicron dual challenge. A gradient in transmission blockage was observed: IM vaccination displayed moderate transmission blockage potential over three airborne chains (approx. 70%), whereas, IN vaccination and PI blocked airborne transmission in >90%. In naïve hamsters, Delta completely outcompeted Omicron within and between hosts after dual infection in onward transmission. Although Delta also outcompeted Omicron in the vaccinated and PI transmission chains, an increase in Omicron competitiveness was observed in these groups. This correlated with the increase in the strength of the humoral response against Delta, with the strongest response seen in PI animals. These data highlight the continuous need to assess the emergence and spread of novel variants in populations with pre-existing immunity and address the additional evolutionary pressure this may exert on the virus.

4.
NPJ Vaccines ; 6(1): 38, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741986

RESUMO

Coxiella burnetii is the bacterial causative agent of the zoonosis Q fever. The current human Q fever vaccine, Q-VAX®, is a fixed, whole cell vaccine (WCV) licensed solely for use in Australia. C. burnetii WCV administration is associated with a dermal hypersensitivity reaction in people with pre-existing immunity to C. burnetii, limiting wider use. Consequently, a less reactogenic vaccine is needed. Here, we investigated contributions of the C. burnetii Dot/Icm type IVB secretion system (T4BSS) and lipopolysaccharide (LPS) in protection and reactogenicity of fixed WCVs. A 32.5 kb region containing 23 dot/icm genes was deleted in the virulent Nine Mile phase I (NMI) strain and the resulting mutant was evaluated in guinea pig models of C. burnetii infection, vaccination-challenge, and post-vaccination hypersensitivity. The NMI ∆dot/icm strain was avirulent, protective as a WCV against a robust C. burnetii challenge, and displayed potentially altered reactogenicity compared to NMI. Nine Mile phase II (NMII) strains of C. burnetii that produce rough LPS, were similarly tested. NMI was significantly more protective than NMII as a WCV; however, both vaccines exhibited similar reactogenicity. Collectively, our results indicate that, like phase I LPS, the T4BSS is required for full virulence by C. burnetii. Conversely, unlike phase I LPS, the T4BSS is not required for vaccine-induced protection. LPS length does not appear to contribute to reactogenicity while the T4BSS may contribute to this response. NMI ∆dot/icm represents an avirulent phase I strain with full vaccine efficacy, illustrating the potential of genetically modified C. burnetii as improved WCVs.

5.
Viruses ; 12(6)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485952

RESUMO

Lassa virus (LASV), an arenavirus causing Lassa fever, is endemic to West Africa with up to 300,000 cases and between 5000 and 10,000 deaths per year. Rarely seen in the United States, Lassa virus is a CDC category A biological agent inasmuch deliberate aerosol exposure can have high mortality rates compared to naturally acquired infection. With the need for an animal model, specific countermeasures remain elusive as there is no FDA-approved vaccine. This natural history of aerosolized Lassa virus exposure in Macaca fascicularis was studied under continuous telemetric surveillance. The macaque response to challenge was largely analogous to severe human disease with fever, tachycardia, hypotension, and tachypnea. During initial observations, an increase trend of activated monocytes positive for viral glycoprotein was accompanied by lymphocytopenia. Disease uniformly progressed to high viremia followed by low anion gap, alkalosis, anemia, and thrombocytopenia. Hypoproteinemia occurred late in infection followed by increased levels of white blood cells, cytokines, chemokines, and biochemical markers of liver injury. Viral nucleic acids were detected in tissues of three non­survivors at endpoint, but not in the lone survivor. This study provides useful details to benchmark a pivotal model of Lassa fever in support of medical countermeasure development for both endemic disease and traditional biodefense purposes.


Assuntos
Aerossóis/efeitos adversos , Febre Lassa/etiologia , Animais , Citometria de Fluxo , Exposição por Inalação , Febre Lassa/diagnóstico , Febre Lassa/virologia , Vírus Lassa/patogenicidade , Macaca fascicularis , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Telemetria , Ensaio de Placa Viral , Viremia/diagnóstico
6.
mBio ; 9(5)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377282

RESUMO

Lassa virus (LASV) causes a severe, often fatal hemorrhagic disease in regions in Africa where the disease is endemic, and approximately 30% of patients develop sudden-onset sensorineural hearing loss after recovering from acute disease. The causal mechanism of hearing loss in LASV-infected patients remains elusive. Here, we report findings after closely examining the chronic disease experienced by surviving macaques assigned to LASV exposure control groups in two different studies. All nonhuman primates (NHPs) developed typical signs and symptoms of Lassa fever, and seven succumbed during the acute phase of disease. Three NHPs survived beyond the acute phase and became chronically ill but survived to the study endpoint, 45 days postexposure. All three of these survivors displayed continuous disease symptoms, and apparent hearing loss was observed using daily subjective measurements, including response to auditory stimulation and tuning fork tests. Objective measurements of profound unilateral or bilateral sensorineural hearing loss were confirmed for two of the survivors by brainstem auditory evoked response (BAER) analysis. Histologic examination of inner ear structures and other tissues revealed the presence of severe vascular lesions consistent with systemic vasculitides. These systemic immune-mediated vascular disorders have been associated with sudden hearing loss. Other vascular-specific damage was also observed to be present in many of the sampled tissues, and we were able to identify persistent virus in the perivascular tissues in the brain tissue of survivors. Serological analyses of two of the three survivors revealed the presence of autoimmune disease markers. Our findings point toward an immune-mediated etiology for Lassa fever-associated sudden-onset hearing loss and lay the foundation for developing potential therapies to prevent and/or cure Lassa fever-associated sudden-onset hearing loss.IMPORTANCE Lassa virus is one of the most common causes of viral hemorrhagic fever. A frequent, but as yet unexplained, consequence of infection with Lassa virus is acute, sudden-onset sensorineural hearing loss in one or both ears. Deafness is observed in approximately 30% of surviving Lassa fever patients, an attack rate that is approximately 300% higher than mumps virus infection, which was previously thought to be the most common cause of virus-induced deafness. Here, we provide evidence from Lassa virus-infected cynomolgus macaques implicating an immune-mediated vasculitis syndrome underlying the pathology of Lassa fever-associated deafness. These findings could change the way human Lassa fever patients are medically managed in order to prevent deafness by including diagnostic monitoring of human survivors for onset of vasculitides via available imaging methods and/or other diagnostic markers of immune-mediated vascular disease.


Assuntos
Doenças Autoimunes/patologia , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Febre Lassa/complicações , Febre Lassa/patologia , Vasculite Sistêmica/patologia , Animais , Doenças Autoimunes/complicações , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Orelha Interna/patologia , Histocitoquímica , Macaca fascicularis , Microscopia , Vasculite Sistêmica/complicações
7.
Hum Vaccin Immunother ; 13(12): 2902-2911, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-29045192

RESUMO

Lassa virus (LASV) is an ambisense RNA virus in the Arenaviridae family and is the etiological agent of Lassa fever, a severe hemorrhagic disease endemic to West and Central Africa. 1,2 There are no US Food and Drug Administration (FDA)-licensed vaccines available to prevent Lassa fever. 1,2 in our previous studies, we developed a gene-optimized DNA vaccine that encodes the glycoprotein precursor gene of LASV (Josiah strain) and demonstrated that 3 vaccinations accompanied by dermal electroporation protected guinea pigs from LASV-associated illness and death. Here, we describe an initial efficacy experiment in cynomolgus macaque nonhuman primates (NHPs) in which we followed an identical 3-dose vaccine schedule that was successful in guinea pigs, and a follow-on experiment in which we used an accelerated vaccination strategy consisting of 2 administrations, spaced 4 weeks apart. In both studies, all of the LASV DNA-vaccinated NHPs survived challenge and none of them had measureable, sustained viremia or displayed weight loss or other disease signs post-exposure. Three of 10 mock-vaccinates survived exposure to LASV, but all of them became acutely ill post-exposure and remained chronically ill to the study end point (45 d post-exposure). Two of the 3 survivors experienced sensorineural hearing loss (described elsewhere). These results clearly demonstrate that the LASV DNA vaccine combined with dermal electroporation is a highly effective candidate for eventual use in humans.


Assuntos
Eletroporação , Febre Lassa/prevenção & controle , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Administração Cutânea , Animais , Modelos Animais de Doenças , Esquemas de Imunização , Macaca fascicularis , Masculino , Análise de Sobrevida , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem , Viremia/prevenção & controle
8.
PLoS One ; 10(3): e0118434, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785602

RESUMO

Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP) vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs), and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Profilaxia Pós-Exposição , Vacinação , Animais , Citocinas/sangue , Doença pelo Vírus Ebola/imunologia , Imunidade , Camundongos , Camundongos Knockout , Perforina/genética
9.
Vaccines (Basel) ; 1(3): 262-77, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-26344112

RESUMO

Lassa virus (LASV) causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC) that expressed the LASV glycoprotein precursor gene (GPC). This plasmid was used to vaccinate guinea pigs (GPs) using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6) with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...