Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 59, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223638

RESUMO

BACKGROUND: Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets. RESULTS: We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared "murine MRD genes" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies. CONCLUSIONS: Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.


Assuntos
Modelos Animais de Doenças , Melanoma , Neoplasia Residual , Animais , Melanoma/genética , Melanoma/patologia , Camundongos , Leucemia/genética , Leucemia/patologia , Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Camundongos Endogâmicos C57BL , Proteômica , Transcriptoma , Perfilação da Expressão Gênica , Multiômica
2.
Int J Mol Sci ; 23(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628366

RESUMO

Acute myeloid leukemia (AML) is a hematological malignancy with a high risk of relapse. This issue is associated with the development of mechanisms leading to drug resistance that are not yet fully understood. In this context, we previously showed the clinical significance of the ATP binding cassette subfamily B-member 1 (ABCB1) in AML patients, namely its association with stemness markers and an overall worth prognosis. Calcium signaling dysregulations affect numerous cellular functions and are associated with the development of the hallmarks of cancer. However, in AML, calcium-dependent signaling pathways remain poorly investigated. With this study, we show the involvement of the ORAI1 calcium channel in store-operated calcium entry (SOCE), the main calcium entry pathway in non-excitable cells, in two representative human AML cell lines (KG1 and U937) and in primary cells isolated from patients. Moreover, our data suggest that in these models, SOCE varies according to the differentiation status, ABCB1 activity level and leukemic stem cell (LSC) proportion. Finally, we present evidence that ORAI1 expression and SOCE amplitude are modulated during the establishment of an apoptosis resistance phenotype elicited by the chemotherapeutic drug Ara-C. Our results therefore suggest ORAI1/SOCE as potential markers of AML progression and drug resistance apparition.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Citarabina/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
3.
Lab Chip ; 22(5): 908-920, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098952

RESUMO

Analyzing cell-cell interaction is essential to investigate how immune cells function. Elegant designs have been demonstrated to study lymphocytes and their interaction partners. However, these devices have been targeting cells of similar dimensions. T lymphocytes are smaller, more deformable, and more sensitive to pressure than many cells. This work aims to fill the gap of a method for pairing cells with different dimensions. The developed method uses hydrodynamic flow focusing in the z-direction for on-site modulation of effective channel height to capture smaller cells as single cells. Due to immune cells' sensitivity to pressure, the proposed method provides a stable system without any change in flow conditions at the analysis area throughout experiments. Paired live cells have their activities analyzed with calcium imaging at the immunological synapse formed under a controlled environment. The method is demonstrated with primary human T lymphocytes, acute myeloid leukemia (AML) cell lines, and primary AML blasts.


Assuntos
Sinapses Imunológicas , Leucemia Mieloide Aguda , Comunicação Celular , Humanos , Dispositivos Lab-On-A-Chip , Linfócitos T
4.
Biosens Bioelectron ; 169: 112546, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911315

RESUMO

Real-time in-vitro multi-modality characterization of neuronal cell ensemble involves highly complex interdependent phenomena and processes. Although a variety of microelectrode arrays (MEAs) have been reported, diagnosis techniques are limited in term of sensing area, optical transparency, resolution and number of modalities. This paper presents an optically transparent thin-film-transistor (TFT) array biosensor chip for neuronal ensemble investigation, in which TFT electrodes are used for six modalities including extracellular voltage recording of both action potential (AP) and local field potential (LFP), current or voltage stimulation, chemical stimulation, electrical impedance measurement, and optical imaging. The sensor incorporates a large sensing area (15.6 mm × 15.6 mm) with a 200 × 150 array of indium-tin-oxide (ITO) electrodes placed at a 50 µm or 100 µm pixel pitch and with 10 ms temporal resolution; these performances are comparable to the state-of-the-art MEA devices. The TFT electrode array is designed based on the switch matrix architecture. The reliability and stability of TFTs are examined by measuring their electrical characteristics. Impedance spectroscopy function is verified by mapping the neuron position and the status (cells alive or dead, contamination) on the electrodes, which facilitates the biochemical studies in electrical domain that adds quantitative views to visual observation of cells through the optical microscopy. An in-vitro neuron culture is studied using electrophysiological, electrochemical, and optical characterization. Detailed signal analysis is demonstrated to prove the capability of bioassay.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Neurônios , Imagem Óptica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA