Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Invest ; : 1-17, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504489

RESUMO

Mast cells play important role in acquired and natural immunity making these favorable therapeutic targets in various inflammatory diseases. Here we observed that, pentacyclic tri terpenoid betulinic acid (BA) treatment resulted in a significantly high number (9%) of cells positive for Hoechst and negative for annexin-V indicating that BA could interfere with plasma membrane integrity. The degranulation of both activated and non-activated mast cells was enhanced upon treatment with BA. The pre-treatment of BA had remarkable effect on calcium response in activated mast cells which showed increased calcium influx relative compared to untreated cells. The results also showed potentially less migration of BA treated mast cells signifying the possible effect of BA on cell membrane. BA treatment resulted in a significant increase in mRNA levels of IL-13 while as mRNA levels of other target cytokines, IL-6 and TNF-α seem to be not affected. Moreover, there was global Increase in phosphorylation of signaling proteins and no significant change in phosphorylation of FcεRI receptors indicating that the effect of BA was independent of signaling cascade or FcεRI receptor mediated mast cell aggregation. Overall, these results portray BA potentiates mast cell effector functions by compromising the membrane integrity and independent of FcεRI involvement.

2.
Appl Biochem Biotechnol ; 196(3): 1464-1480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37418128

RESUMO

Lactoferrin is a multifunctional glycoprotein present in mammalian milk. It possesses antimicrobial, antioxidant, immunomodulatory, and several biological functions. Owing to the current trend of increasing antibiotic resistance, our study was designed to purify lactoferrin from camel milk colostrum using cation exchange chromatography on the SP-Sepharose high-performance column. The purity and molecular weight of lactoferrin were checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The chromatogram of the purification procedure illustrated a single peak corresponding to lactoferrin, while the SDS-PAGE revealed 78 kDa molecular weight protein. Furthermore, lactoferrin protein and its hydrolysate form were assessed for its antimicrobial potential. The highest inhibitory effect of whole lactoferrin at the concentration (4 mg/ml) was observed against methicillin-resistant S. aureus (MRSA) and S. aureus, while 10 mg/ml concentration was effective against K. pneumonia, and 27 mg/ml was potent against multidrug-resistant (MDR) bacteria, P. aeruginosa. Likewise, MRSA was more sensitive toward iron-free lactoferrin (2 mg/ml) and hydrolyzed lactoferrin (6 mg/ml). The tested lactoferrin forms showed variability in minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) among tested bacteria. The scanning electron microscopy (SEM) analysis images revealed distortions of the bacterial cells exposed to lactoferrin. The antibiofilm effect differed depending on the concentration and the type of the bacteria; biofilm inhibition ranged from 12.5 to 91.3% in the tested pathogenic bacteria. Moreover, the anticancer activity of lactoferrin forms exhibited a dose-dependent cytotoxicity against human lung cancer cell line (A549).


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Lactoferrina/farmacologia , Lactoferrina/química , Staphylococcus aureus , Camelus , Leite/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias , Biofilmes , Antibacterianos/química
3.
J Biomol Struct Dyn ; : 1-11, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047623

RESUMO

Protein and peptide misfolding is a central factor in the formation of pathological aggregates and fibrils linked to disorders like Alzheimer's and Parkinson's diseases. Therefore, it's essential to understand how food additives, particularly Azorubine, affect protein structures and their ability to induce aggregation. In this study, human serum albumin (HSA) was used as a model protein to investigate the binding and conformational changes caused by azorubine, a common food and drink colorant. The research revealed that azorubine destabilized the conformation of HSA at both physiological (pH 7.4) and acidic (pH 3.5) conditions. The loss of tryptophan fluorescence in HSA suggested significant structural alterations, particularly around aromatic residues. Far UV-CD analysis demonstrated disruptions in HSA's secondary structure, with a notable reduction in α-helical structures at pH 7.4. At pH 3.5, Azorubine induced even more extensive perturbations, resulting in a random coil conformation at higher azorubine concentrations. The study also investigated aggregation phenomena through turbidity measurements, RLS analysis, and TEM imaging. At pH 3.5, larger insoluble aggregates formed, while at pH 7.4, only conformational changes occurred without aggregate formation. Cytotoxicity assessments on neuroblastoma (SH-SY5Y) cells highlighted the concentration-dependent toxicity of albumin aggregates. Molecular dynamics simulations reaffirmed the stable interaction between azorubine and HSA. This research provides valuable insights into the mechanisms by which azorubine influences protein conformations. To further advance our understanding and contribute to the broader knowledge in this area, several future directions can be considered such as exploring other proteins, studying dose-response relationship, gaining mechanistic insights, biological relevance, toxicity assessment, identifying alternative food colorants, and mitigation strategies to prevent adverse effects of azorubine on serum proteins.Communicated by Ramaswamy H. Sarma.

4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834523

RESUMO

Amyloid fibrils abnormally accumulate together in the human body under certain conditions, which can result in lethal conditions. Thus, blocking this aggregation may prevent or treat this disease. Chlorothiazide (CTZ) is a diuretic and is used to treat hypertension. Several previous studies suggest that diuretics prevent amyloid-related diseases and reduce amyloid aggregation. Thus, in this study we examine the effects of CTZ on hen egg white lysozyme (HEWL) aggregation using spectroscopic, docking, and microscopic approaches. Our results showed that under protein misfolding conditions of 55 °C, pH 2.0, and 600 rpm agitation, HEWL aggregated as evidenced by the increased turbidity and Rayleigh light scattering (RLS). Furthermore, thioflavin-T, as well as trans electron microscope (TEM) analysis confirmed the formation of amyloid structures. An anti-aggregation effect of CTZ is observed on HEWL aggregations. Circular dichroism (CD), TEM, and Thioflavin-T fluorescence show that both CTZ concentrations reduce the formation of amyloid fibrils as compared to fibrillated. The turbidity, RLS, and ANS fluorescence increase with CTZ increasing. This increase is attributed to the formation of a soluble aggregation. As evidenced by CD analysis, there was no significant difference in α-helix content and ß-sheet content between at 10 µM CTZ and 100 µM. A TEM analysis of HEWL coincubated with CTZ at different concentrations validated all the above-mentioned results. The TEM results show that CTZ induces morphological changes in the typical structure of amyloid fibrils. The steady-state quenching study demonstrated that CTZ and HEWL bind spontaneously via hydrophobic interactions. HEWL-CTZ also interacts dynamically with changes in the environment surrounding tryptophan. Computational results revealed the binding of CTZ to ILE98, GLN57, ASP52, TRP108, TRP63, TRP63, ILE58, and ALA107 residues in HEWL via hydrophobic interactions and hydrogen bonds with a binding energy of -6.58 kcal mol-1. We suggest that at 10 µM and 100 µM, CTZ binds to the aggregation-prone region (APR) of HEWL and stabilizes it, thus preventing aggregation. Based on these findings, we can conclude that CTZ has antiamyloidogenic activity and can prevent fibril aggregation.


Assuntos
Anti-Hipertensivos , Microscopia , Humanos , Animais , Clorotiazida , Muramidase/química , Dicroísmo Circular , Amiloide/metabolismo , Galinhas/metabolismo
5.
Arch Environ Contam Toxicol ; 84(2): 179-187, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586095

RESUMO

In this study, we measured various parameters of oxidative stress, immune response, and abnormalities in the erythrocyte nucleus of Labeo rohita inhabiting the polluted Kshipra River, India. The river water contains heavy metals in this order: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Fe showed the highest accumulation in gills, liver, and gut, whereas Ni (gills and gut) and Cd (liver) were lowest accumulated. The superoxide dismutase (SOD) and catalase (CAT) were found to be increased significantly (p < 0.05) in the gills (SOD: 211%; CAT: 150%), liver (SOD: 447%; CAT: 304%), and gut (SOD: 98.11%; CAT: 58.69%) in comparison with the reference fish. However, glutathione S transferase (GST) showed significantly (p < 0.05) higher activity in the gills (25.5%) but lower activity in the liver (- 49.22%) and the gut (- 30.57%). Moreover, reduced glutathione (GSH) decreased significantly (p < 0.05) in the gills (- 46.66%), liver (- 33.20%), and gut (- 39.87%). Despite the active response of the antioxidant enzymes, the highest lipid peroxidation was observed in the liver (463%). The effect of heavy metals was also observed on the immunity of the fish, causing immunosuppression as evident by significantly (p < 0.05) lower values of acid phosphatase (- 50%), myeloperoxidase (- 48.33%), and nitric oxide synthase (- 50%) in serum. Histopathological findings showed gill lamellae shortening, hyperplasia, club-shaped lamellar tip in exposed gills and necrosis, vacuolization, and pyknosis in the exposed liver. Furthermore, polluted river water was also found to induce micronuclei (2.1%) and lobed nuclei (0.72%) in erythrocytes (0.65%). These results indicate the potential of heavy metal-induced oxidative stress and other forms of stress in inhabiting fish, highlighting the need to control the pollution of this river water.


Assuntos
Cyprinidae , Metais Pesados , Poluentes Químicos da Água , Animais , Rios , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo , Metais Pesados/análise , Poluição da Água , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Cyprinidae/metabolismo , Oxirredução , Fígado/metabolismo , Água , Brânquias/metabolismo , Peroxidação de Lipídeos
6.
J Biol Chem ; 298(11): 102497, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115460

RESUMO

Pentacyclic triterpenoids, including ursolic acid (UA), are bioactive compounds with multiple biological activities involving anti-inflammatory effects. However, the mode of their action on mast cells, key players in the early stages of allergic inflammation, and underlying molecular mechanisms remain enigmatic. To better understand the effect of UA on mast cell signaling, here we examined the consequences of short-term treatment of mouse bone marrow-derived mast cells with UA. Using IgE-sensitized and antigen- or thapsigargin-activated cells, we found that 15 min exposure to UA inhibited high affinity IgE receptor (FcεRI)-mediated degranulation, calcium response, and extracellular calcium uptake. We also found that UA inhibited migration of mouse bone marrow-derived mast cells toward antigen but not toward prostaglandin E2 and stem cell factor. Compared to control antigen-activated cells, UA enhanced the production of tumor necrosis factor-α at the mRNA and protein levels. However, secretion of this cytokine was inhibited. Further analysis showed that UA enhanced tyrosine phosphorylation of the SYK kinase and several other proteins involved in the early stages of FcεRI signaling, even in the absence of antigen activation, but inhibited or reduced their further phosphorylation at later stages. In addition, we show that UA induced changes in the properties of detergent-resistant plasma membrane microdomains and reduced antibody-mediated clustering of the FcεRI and glycosylphosphatidylinositol-anchored protein Thy-1. Finally, UA inhibited mobility of the FcεRI and cholesterol. These combined data suggest that UA exerts its effects, at least in part, via lipid-centric plasma membrane perturbations, hence affecting the functions of the FcεRI signalosome.


Assuntos
Receptores de IgE , Triterpenos , Camundongos , Animais , Receptores de IgE/metabolismo , Mastócitos/metabolismo , Degranulação Celular , Cálcio/metabolismo , Triterpenos/farmacologia , Triterpenos/metabolismo , Antígenos/metabolismo , Lipídeos/farmacologia , Ácido Ursólico
7.
Pharmaceutics ; 13(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066092

RESUMO

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150-250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.

8.
Membranes (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35054563

RESUMO

We aim to discover diagnostic tools to detect phosphatidylserine (PS) externalization on apoptotic cell surface using PS binding aptamers, AAAGAC and TAAAGA, and hence to understand chemotherapy drug efficacy when inducing apoptosis into cancer cells. The entropic fragment-based approach designed aptamers have been investigated to inspect three aspects: lipid specificity in aptamers' membrane binding and bilayer physical properties-induced regulation of binding mechanisms, the apoptosis-induced cancer cell surface binding of aptamers, and the aptamer-induced cytotoxicity. The liposome binding assays show preferred membrane binding of aptamers due to presence of PS in predominantly phosphatidylcholine-contained liposomes. Two membrane stiffness reducing amphiphiles triton X-100 and capsaicin were found to enhance membrane's aptamer adsorption suggesting that bilayer physical properties influence membrane's adsorption of drugs. Microscopic images of fluorescence-tagged aptamer treated LoVo cells show strong fluorescence intensity only if apoptosis is induced. Aptamers find enhanced PS molecules to bind with on the surface of apoptotic over nonapoptotic cells. In cytotoxicity experiments, TAAAGA (over poor PS binding aptamer CAGAAAAAAAC) was found cytotoxic towards RBL cells due to perhaps binding with nonapoptotic externalized PS randomly and thus slowly breaching plasma membrane integrity. In these three experimental investigations, we found aptamers to act on membranes at comparable concentrations and specifically with PS binding manner. Earlier, we reported the origins of actions through molecular mechanism studies-aptamers interact with lipids using mainly charge-based interactions. Lipids and aptamers hold distinguishable charge properties, and hence, lipid-aptamer association follows distinguishable energetics due to electrostatic and van der Waals interactions. We discover that our PS binding aptamers, due to lipid-specific interactions, appear as diagnostic tools capable of detecting drug-induced apoptosis in cancer cells.

9.
J Biomol Struct Dyn ; 39(3): 777-786, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31960772

RESUMO

Methylglyoxal (MG) is a potent glycating agent which reacts with proteins to form advanced glycation end products (AGEs). These chemically stable AGEs crosslink with proteins and could lead to amyloid formation that has the role in several diseases including Alzheimer's and Parkinson's. In this piece of work, glycation-induced conformational changes in HSA were observed with quenching of tryptophan fluorescence by 73.8% (41 nm red shift) and loss of hydrophobicity of HSA. CD spectroscopy result reaffirmed secondary structure changes in HSA. Moreover, MG-induced changes in HSA, proceeds to amyloid structure as characterized by an increase in thioflavin (ThT) fluorescence and transmission electron microscopy (TEM) images of HSA aggregates. Quercetin was found to inhibit both AGEs production and amyloid formation. Viability of MCF-7 cells was found to be increased with AGEs treatment, illustrating proliferation of cancer cells. Wound healing assay also revealed increased proliferation and migration of cells in the presence of AGEs. Additionally, molecular docking analyses were performed to demonstrate interactions involved in the stabilization of HSA-quercetin complex. The binding affinities of quercetin were found to be (K d = 105 M -1) much higher compared with MG (K d = 102 M -1). From this study, it is quite clear that quercetin reverses the effect of MG by sterically inhibiting the interaction between HSA and MG. Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Quercetina , Proliferação de Células , Produtos Finais de Glicação Avançada , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Espectrometria de Fluorescência , Análise Espectral
10.
Front Microbiol ; 10: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853939

RESUMO

Cancer and the associated secondary bacterial infections are leading cause of mortality, due to the paucity of effective drugs. Here, we have synthesized silver nanoparticles (AgNPs) from organic resource and confirmed their anti-cancer and anti-microbial potentials. Microwave irradiation method was employed to synthesize AgNPs using Pandanus odorifer leaf extract. Anti-cancer potential of AgNPs was evaluated by scratch assay on the monolayer of rat basophilic leukemia (RBL) cells, indicating that the synthesized AgNPs inhibit the migration of RBL cells. The synthesized AgNPs showed MIC value of 4-16 µg/mL against both Gram +ve and Gram -ve bacterial strains, exhibiting the anti-microbial potential. Biofilm inhibition was recorded at sub-MIC values against Gram +ve and Gram -ve bacterial strains. Violacein and alginate productions were reduced by 89.6 and 75.6%, respectively at 4 and 8 µg/mL of AgNPs, suggesting anti-quorum sensing activity. Exopolysaccharide production was decreased by 61-79 and 84% for Gram -ve and Gram +ve pathogens respectively. Flagellar driven swarming mobility was also reduced significantly. Furthermore, In vivo study confirmed their tolerability in mice, indicating their clinical perspective. Collective, we claim that the synthesized AgNPs have anti-metastasis as well as anti-microbial activities. Hence, this can be further tested for therapeutic options to treat cancer and secondary bacterial infections.

11.
Hum Mol Genet ; 21(12): 2745-58, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22422766

RESUMO

Spinal muscular atrophy (SMA) is caused by mutation of the Survival Motor Neurons 1 (SMN1) gene and is characterized by degeneration of spinal motor neurons. The severity of SMA is primarily influenced by the copy number of the SMN2 gene. Additional modifier genes that lie outside the SMA locus exist and one gene that could modify SMA is the Zinc Finger Protein (ZPR1) gene. To test the significance of ZPR1 downregulation in SMA, we examined the effect of reduced ZPR1 expression in mice with mild and severe SMA. We report that the reduced ZPR1 expression causes increase in the loss of motor neurons, hypermyelination in phrenic nerves, increase in respiratory distress and disease severity and reduces the lifespan of SMA mice. The deficiency of SMN-containing sub-nuclear bodies correlates with the severity of SMA. ZPR1 is required for the accumulation of SMN in sub-nuclear bodies. Further, we report that ZPR1 overexpression increases levels of SMN and promotes accumulation of SMN in sub-nuclear bodies in SMA patient fibroblasts. ZPR1 stimulates neurite growth and rescues axonal growth defects in SMN-deficient spinal cord neurons from SMA mice. These data suggest that the severity of disease correlates negatively with ZPR1 levels and ZPR1 may be a protective modifier of SMA.


Assuntos
Proteínas de Transporte/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Nervo Frênico/metabolismo , Nervo Frênico/patologia , Nervo Frênico/ultraestrutura , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Índice de Gravidade de Doença , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
12.
BMC Biotechnol ; 11: 41, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21501492

RESUMO

BACKGROUND: Quantitative real-time PCR (qPCR) is becoming increasingly important for DNA genotyping and gene expression analysis. For continuous monitoring of the production of PCR amplicons DNA-intercalating dyes are widely used. Recently, we have introduced a new qPCR mix which showed improved amplification of medium-size genomic DNA fragments in the presence of DNA dye SYBR green I (SGI). In this study we tested whether the new PCR mix is also suitable for other DNA dyes used for qPCR and whether it can be applied for amplification of DNA fragments which are difficult to amplify. RESULTS: We found that several DNA dyes (SGI, SYTO-9, SYTO-13, SYTO-82, EvaGreen, LCGreen or ResoLight) exhibited optimum qPCR performance in buffers of different salt composition. Fidelity assays demonstrated that the observed differences were not caused by changes in Taq DNA polymerase induced mutation frequencies in PCR mixes of different salt composition or containing different DNA dyes. In search for a PCR mix compatible with all the DNA dyes, and suitable for efficient amplification of difficult-to-amplify DNA templates, such as those in whole blood, of medium size and/or GC-rich, we found excellent performance of a PCR mix supplemented with 1 M 1,2-propanediol and 0.2 M trehalose (PT enhancer). These two additives together decreased DNA melting temperature and efficiently neutralized PCR inhibitors present in blood samples. They also made possible more efficient amplification of GC-rich templates than betaine and other previously described additives. Furthermore, amplification in the presence of PT enhancer increased the robustness and performance of routinely used qPCRs with short amplicons. CONCLUSIONS: The combined data indicate that PCR mixes supplemented with PT enhancer are suitable for DNA amplification in the presence of various DNA dyes and for a variety of templates which otherwise can be amplified with difficulty.


Assuntos
Reação em Cadeia da Polimerase/instrumentação , Propilenoglicol/química , Trealose/química , Animais , DNA/química , DNA/genética , Corantes Fluorescentes/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL
13.
Cell Signal ; 21(8): 1337-45, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19376224

RESUMO

The small chemical vacuolin-1 induces rapid formation of large vacuoles in various cell types. In epithelial cells, vacuolin-1 has been shown to inhibit Ca2+ ionophore-induced exocytosis depending on experimental conditions used but had no effect on repair of damaged membranes. However, it is not known whether vacuolin-1 could inhibit exocytosis induced by immunoreceptor triggering in professional secretory cells and whether there is any correlation between effect of vacuolin-1 on exocytosis and membrane repair in such cells. Here we show that in rat basophilic leukemia (RBL-2H3) cells activated by the high-affinity IgE receptor (FcepsilonRI) triggering vacuolin-1 enhanced exocytosis. Under identical conditions of activation, vacuolin-1 inhibited exocytosis in mouse bone marrow-derived mast cells (BMMCs). This inhibition was not reflected by decreased phosphorylation of the FcepsilonRI alpha and beta subunits, linker for activation of T cells, non-T cell activation linker, Akt and MAP kinase Erk, and uptake of extracellular Ca2+, indicating that early activation events are not affected. In both cell types vacuolin-1 led to formation of numerous vacuoles, a process which was inhibited by bafilomycin A1, an inhibitor of vacuolar H+-ATPase. Thapsigargin- or Ca2+ ionophore A23187-induced exocytosis also showed different sensitivity to the inhibitory effect of vacuolin-1. Pretreatment of the cells with vacuolin-1 followed by permeabilization with bacterial toxin streptolysin O enhanced Ca2+-dependent repair of plasma membrane lesions in RBL-2H3 cells but inhibited it in BMMCs. Our data indicate that lysosomal exocytosis exhibits different sensitivity to vacuolin-1 depending on the cell type analyzed and mode of activation. Furthermore, our results support the concept that lysosomal exocytosis is involved in the repair of injured plasma membranes.


Assuntos
Exocitose/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Mastócitos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/fisiologia , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Fosforilação , Ratos , Receptores de IgE/imunologia , Receptores de IgE/metabolismo , Vacúolos/fisiologia
14.
Nucleic Acids Res ; 36(15): e93, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18606615

RESUMO

Tetraalkylammonium (TAA) derivatives have been reported to serve as stabilizers of asymmetrical cyanine dyes in aqueous solutions and to increase the yield and efficiency of polymerase chain reaction (PCR) detected by end-point analysis. In this study, we compared the ability of various TAA derivatives (with alkyl chain ranging from 1 to 5 carbons) and some other compounds to serve as enhancers of real-time PCR based on fluorescence detection from intercalating dye SYBR Green I (SGI). Our data indicate that TAA chlorides and some other TAA derivatives serve as potent enhancers of SGI-monitored real-time PCR. Optimal results were obtained with 10-16 mM tetrapropylammonium chloride. The effect of TAA compounds was dependent on the nature of counter ions present and composition of the reaction mixtures used. Based on measurements of SGI-generated fluorescence signal in the presence of PCR-amplified DNA fragments, oligonucleotide primers and/or various additives, we propose that TAA-derivatives reduce the binding of SGI to oligonucleotide primers and thus enhance primer-template interactions during annealing phase. Furthermore, these compounds serve as stabilizers of SGI-containing PCR mixtures. The combined data indicate that TAA derivatives might be a new class of additives contributing to robustness of real-time PCR monitored by asymmetrical cyanine dye SGI.


Assuntos
Corantes Fluorescentes/análise , Compostos Orgânicos/análise , Reação em Cadeia da Polimerase/métodos , Compostos de Amônio Quaternário/química , Animais , Benzotiazóis , Diaminas , Camundongos , Camundongos Endogâmicos C57BL , Quinolinas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...