Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667192

RESUMO

Rapid surface charge mapping of a solid surface remains a challenge. In this study, we present a novel microchip based on liquid crystals for assessing the surface charge distribution of a planar or soft surface. This chip enables rapid measurements of the local surface charge distribution of a charged surface. The chip consists of a micropillar array fabricated on a transparent indium tin oxide substrate, while the liquid crystal is used to fill in the gaps between the micropillar structures. When an object is placed on top of the chip, the local surface charge (or zeta potential) influences the orientation of the liquid crystal molecules, resulting in changes in the magnitude of transmitted light. By measuring the intensity of the transmitted light, the distribution of the surface charge can be accurately quantified. We calibrated the chip in a three-electrode configuration and demonstrated the validity of the chip for rapid surface charge mapping using a borosilicate glass slide. This chip offers noninvasive, rapid mapping of surface charges on charged surfaces, with no need for physical or chemical modifications, and has broad potential applications in biomedical research and advanced material design.


Assuntos
Cristais Líquidos , Propriedades de Superfície , Cristais Líquidos/química , Compostos de Estanho/química , Eletrodos , Técnicas Biossensoriais
2.
Biosensors (Basel) ; 13(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37504119

RESUMO

Rapid and accurate analysis of micro/nano bio-objects (e.g., cells, biomolecules) is crucial in clinical diagnostics and drug discovery. While a traditional resistive pulse sensor can provide multiple kinds of information (size, count, surface charge, etc.) about analytes, it has low throughput. We present a unique bipolar pulse-width, multiplexing-based resistive pulse sensor for high-throughput analysis of microparticles. Signal multiplexing is enabled by exposing the central electrode at different locations inside the parallel sensing channels. Together with two common electrodes, the central electrode encodes the electrical signal from each sensing channel, generating specific bipolar template waveforms with different pulse widths. Only one DC source is needed as input, and only one combined electrical output is collected. The combined signal can be demodulated using correlation analysis and a unique iterative cancellation scheme. The accuracy of particle counting and sizing was validated using mixtures of various sized microparticles. Results showed errors of 2.6% and 6.1% in sizing and counting, respectively. We further demonstrated its accuracy for cell analysis using HeLa cells.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Células HeLa , Eletrodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos
3.
Cells ; 12(4)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36831185

RESUMO

Many cellular functions are regulated by cell surface charges, such as intercellular signaling and metabolism. Noninvasive measurement of surface charge distribution of a single cell plays a vital role in understanding cellular functions via cell membranes. We report a method for cell surface charge mapping via photoelectric interactions. A cell is placed on an array of microelectrodes fabricated on a transparent ITO (indium tin oxide) surface. An incident light irradiates the ITO surface from the backside. Because of the influence of the cell surface charge (or zeta potential), the photocurrent and the absorption of the incident light are changed, inducing a magnitude change of the reflected light. Hence, the cell surface charge distribution can be quantified by analyzing the reflected light intensity. This method does not need physical or chemical modification of the cell surface. We validated this method using charged microparticles (MPs) and two types of cells, i.e., human dermal fibroblast cells (HDFs) and human mesenchymal stem cells (hMSC). The measured average zeta potentials were in good agreement with the standard electrophoresis light scattering method.


Assuntos
Luz , Humanos , Microeletrodos , Membrana Celular
4.
ACS Biomater Sci Eng ; 9(2): 877-888, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630688

RESUMO

Angiogenesis is essential for cardiac repair after myocardial infarction. Promoting angiogenesis has been demonstrated as an effective approach for myocardial infarction treatment. Several different strategies for inducing myocardial angiogenesis have been explored, including exogenous delivery of angiogenic genes, proteins, microRNAs, cells, and extracellular vesicles. Various types of injectable hydrogels have been investigated for cardiac tissue repair. One of the most promising injectable hydrogels in cardiac regeneration is a cardiac extracellular matrix hydrogel that is derived from decellularized porcine myocardium. It can be delivered minimally invasively via transendocardial delivery. The safety and efficacy of cardiac extracellular matrix hydrogels have been shown in small and large animal myocardial infarction models as well as clinical trials. The main mechanisms underlying the therapeutic benefits of cardiac extracellular matrix hydrogels have been elucidated and involved in the modulation of the immune response, downregulation of pathways related to heart failure progression and fibrosis, upregulation of genes important for cardiac muscle contraction, and enhancing cardiomyocyte differentiation and maturation from stem cells. However, no potent capillary network formation induced by cardiac extracellular matrix hydrogels has been reported. In this study, we tested the feasibility of incorporating a fibrin matrix into cardiac extracellular matrix hydrogels to improve the angiogenic properties of the hydrogel. Our in vitro results demonstrate that fibrin-enriched cardiac extracellular matrix hydrogels can induce robust endothelial cell tube formation from human umbilical vein endothelial cells and promote the sprouting of human mesenchymal stem cell spheroids. The obtained information from this study is very critical toward the future in vivo evaluation of fibrin-enriched cardiac extracellular matrix hydrogels in promoting myocardial angiogenesis.


Assuntos
Matriz Extracelular , Fibrina , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Infarto do Miocárdio , Animais , Humanos , Matriz Extracelular/metabolismo , Fibrina/farmacologia , Fibrina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Suínos , Coração/anatomia & histologia , Coração/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia
5.
Cells ; 10(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208707

RESUMO

Many bio-functions of cells can be regulated by their surface charge characteristics. Mapping surface charge density in a single cell's surface is vital to advance the understanding of cell behaviors. This article demonstrates a method of cell surface charge mapping via electrostatic cell-nanoparticle (NP) interactions. Fluorescent nanoparticles (NPs) were used as the marker to investigate single cells' surface charge distribution. The nanoparticles with opposite charges were electrostatically bonded to the cell surface; a stack of fluorescence distribution on a cell's surface at a series of vertical distances was imaged and analyzed. By establishing a relationship between fluorescent light intensity and number of nanoparticles, cells' surface charge distribution was quantified from the fluorescence distribution. Two types of cells, human umbilical vein endothelial cells (HUVECs) and HeLa cells, were tested. From the measured surface charge density of a group of single cells, the average zeta potentials of the two types of cells were obtained, which are in good agreement with the standard electrophoretic light scattering measurement. This method can be used for rapid surface charge mapping of single particles or cells, and can advance cell-surface-charge characterization applications in many biomedical fields.


Assuntos
Membrana Celular/química , Microscopia de Fluorescência/métodos , Nanopartículas , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos
6.
ACS Biomater Sci Eng ; 6(12): 6808-6818, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320624

RESUMO

Cell sheet technology has demonstrated great promise in delivering a large amount of therapeutic cells for tissue repair, including in the myocardium. However, the lack of host integration remains one of the key challenges in using cell sheets for cardiac repair. Paracrine factors secreted by mesenchymal stem cells (MSCs) have been reported to facilitate tissue repair and regeneration in a variety of ways. It has been demonstrated that paracrine factors from MSCs could enhance scaffold recellularization and vascularization. In this study, we used an in vitro cardiac matrix mimic platform to examine the effects of hMSCs preseeding on the interactions between cell sheets and cardiac matrix. The fabricated human induced pluripotent stem cells-derived cardiomyocyte sheets were attached to a decellularized porcine myocardium slice with or without preseeding of hMSCs. The hMSCs preseeding significantly enhanced the interactions between cardiomyocyte sheets and cardiac matrix in terms of cell migration distance, cell distribution, and mature vascular and cardiomyocyte marker expressions in the matrix. Growth factor and matrix metalloproteinases array analysis suggested that hMSCs- induced vascularization and MMPs regulation are the two possible mechanisms that lead to the improved CMs and cardiac matrix interactions. Further examination of these two mechanisms will enable the development of new approaches to facilitate transplanted cells for tissue repair.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Animais , Movimento Celular , Humanos , Miocárdio , Miócitos Cardíacos , Suínos
7.
ACS Sens ; 5(2): 527-534, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31939290

RESUMO

Cell surface charge has been recognized as an important cellular property. We developed a microfluidic sensor based on resistive pulse sensing to assess surface charge and sizes of single cells suspended in a continuous flow. The device consists of two consecutive resistive pulse sensors (RPSs) with identical dimensions. Opposite electric fields were applied on the two RPSs. A charged cell in the RPSs was accelerated or decelerated by the electric fields and thus exhibited different transit times passing through the two RPSs. The cell surface charge is measured with zeta potential that can be quantified with the transit time difference. The transit time of each cell can be accurately detected with the width of pulses generated by the RPS, while the cell size can be calculated with the pulse magnitude at the same time. This device has the ability to detect surface charges and sizes of individual cells with high tolerance in cell types and testing solutions compared with traditional electrophoretic light scattering methods. Three different types of cells including HeLa cancer cells, human dermal fibroblast cells, and human umbilical vein endothelial cells (HUVECs) were tested with the sensor. Results showed a significant difference of zeta potentials between HeLa cells and fibroblasts or HUVECs. In addition, when HeLa cells were treated with various concentrations of glutamine, the effects on cancer cell surface charge were detected. Our results demonstrated the great potential of using our sensor for cell type sorting, cancer cell detection, and cell status analysis.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...