Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(42): 20700-20709, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37908742

RESUMO

Alloys of gallium with transition metals have recently received considerable attention for their applications in microelectronics and catalysis. Here, we investigated the initial stages of the Ga-Cu alloy formation on Cu(111) and Cu(001) surfaces using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). The results show that Ga atoms deposited using physical vapor deposition readily intermix with the Cu surface, leading to a random distribution of the Ga and Cu atoms within the surface layer, on both terraces and monolayer-thick islands formed thereon. However, as the Ga coverage increases, several ordered structures are formed. The (√3×√3)R30° structure is found to be thermodynamically most stable on Cu(111). This structure remains after vacuum annealing at 600 K, independent of the initial Ga coverage (varied between 0.5 and 3 monolayers), indicating a self-limited growth of the Ga-Cu alloy layer, with the rest of the Ga atoms migrating into the Cu crystal. For Ga deposited on Cu(001), we observed a (1 × 5)-reconstructed surface, which has never been observed for surface alloys on Cu(001). The experimental findings were rationalized on the basis of density functional theory (DFT) calculations, which provided structural models for the most stable surface Ga-Cu alloys on Cu(111) and Cu(001). The study sheds light on the complex interaction of Ga with transition metal surfaces and the interfaces formed thereon that will aid in a better understanding of surface alloying and chemical reactions on the Ga-based alloys.

2.
Phys Chem Chem Phys ; 25(43): 29808-29815, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37886831

RESUMO

Atomically defined MnO(001) thin films were grown on an Au(111) substrate, and their interaction with water (D2O) was investigated by infrared reflection absorption spectroscopy (IRAS) and thermal desorption spectroscopy (TDS). Carbon monoxide adsorption experiments were performed to probe surface atoms and defects on oxide films. Next, water interaction was investigated from which an associative binding pathway and a dissociative binding pathway were revealed, where the water molecules adsorb at terraces and water dissociation takes place at oxygen vacancies mediated by nearby Mn2+ sites. The IRAS data are supported by TDS experiments, which also manifest the importance of defects in the adsorption characteristics of MnO.

3.
Nat Commun ; 14(1): 4649, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532720

RESUMO

Gallium-containing alloys have recently been reported to hydrogenate CO2 to methanol at ambient pressures. However, a full understanding of the Ga-promoted catalysts is still missing due to the lack of information about the surface structures formed under reaction conditions. Here, we employed near ambient pressure scanning tunneling microscopy and x-ray photoelectron spectroscopy to monitor the evolution of well-defined Cu-Ga surfaces during CO2 hydrogenation. We show the formation of two-dimensional Ga(III) oxide islands embedded into the Cu surface in the reaction atmosphere. The islands are a few atomic layers in thickness and considerably differ from bulk Ga2O3 polymorphs. Such a complex structure, which could not be determined with conventional characterization methods on powder catalysts, should be used for elucidating the reaction mechanism on the Ga-promoted metal catalysts.

4.
ACS Appl Mater Interfaces ; 14(43): 48609-48618, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36255411

RESUMO

Ultrathin silica films are considered suitable two-dimensional model systems for the study of fundamental chemical and physical properties of all-silica zeolites and their derivatives, as well as novel supports for the stabilization of single atoms. In the present work, we report the creation of a new model catalytic support based on the surface functionalization of different silica bilayer (BL) polymorphs with well-defined atomic structures. The functionalization is carried out by means of in situ H-plasma treatments at room temperature. Low energy electron diffraction and microscopy data indicate that the atomic structure of the films remains unchanged upon treatment. Comparing the experimental results (photoemission and infrared absorption spectra) with density functional theory simulations shows that H2 is added via the heterolytic dissociation of an interlayer Si-O-Si siloxane bond and the subsequent formation of a hydroxyl and a hydride group in the top and bottom layers of the silica film, respectively. Functionalization of the silica films constitutes the first step into the development of a new type of model system of single-atom catalysts where metal atoms with different affinities for the functional groups can be anchored in the SiO2 matrix in well-established positions. In this way, synergistic and confinement effects between the active centers can be studied in a controlled manner.

5.
Angew Chem Int Ed Engl ; 61(20): e202112640, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35243735

RESUMO

Atomically dispersed precious metals on oxide supports have recently become increasingly interesting catalytic materials. Nonetheless, their non-trivial preparation and limited thermal and environmental stability constitutes an issue for their potential applications. Here we demonstrate that an oxygen plasma pre-treatment of the ceria (CeO2 ) surface serves to anchor Pt single atoms, making them active and resistant towards sintering in the CO oxidation reaction. Through a combination of experimental results obtained on well-defined CeO2 films and theory, we show that the O2 plasma causes surface nanostructuring and the formation of surface peroxo (O2 2- ) species, favoring the uniform and dense distribution of isolated strongly bonded Pt2+ atoms. The promotional effect of the plasma treatment was further demonstrated on powder Pt/CeO2 catalysts. We believe that plasma functionalization can be applied to other metal/oxide systems to achieve tunable and stable catalysts with a high density of active sites.

6.
J Phys Chem C Nanomater Interfaces ; 125(2): 1361-1367, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33510828

RESUMO

We studied the initial stages of Ga interaction with the Cu(001) surface and environment-induced surface transformations in an attempt to elucidate the surface chemistry of the Cu-Ga catalysts recently proposed for CO2 hydrogenation to methanol. The results show that Ga readily intermixes with Cu upon deposition in vacuum. However, even traces of oxygen in the gas ambient cause Ga oxidation and the formation of two-dimensional ("monolayer") Ga oxide islands uniformly covering the Cu surface. The surface morphology and the oxidized state of Ga remain in H2 as well as in a CO2 + H2 reaction mixture at elevated pressures and temperatures (0.2 mbar, 700 K). The results indicate that the Ga-doped Cu surface under reaction conditions exposes a variety of structures including GaO x /Cu interfacial sites, which must be taken into account for elucidating the reaction mechanism.

7.
Chemistry ; 27(16): 5268-5276, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33355967

RESUMO

The study reports the first attempt to address the interplay between surface and bulk in hydride formation in ceria (CeO2 ) by combining experiment, using surface sensitive and bulk sensitive spectroscopic techniques on the two sample systems, i.e., CeO2 (111) thin films and CeO2 powders, and theoretical calculations of CeO2 (111) surfaces with oxygen vacancies (Ov ) at the surface and in the bulk. We show that, on a stoichiometric CeO2 (111) surface, H2 dissociates and forms surface hydroxyls (OH). On the pre-reduced CeO2-x samples, both films and powders, hydroxyls and hydrides (Ce-H) are formed on the surface as well as in the bulk, accompanied by the Ce3+ ↔ Ce4+ redox reaction. As the Ov concentration increases, hydroxyl is destabilized and hydride becomes more stable. Surface hydroxyl is more stable than bulk hydroxyl, whereas bulk hydride is more stable than surface hydride. The surface hydride formation is the kinetically favorable process at relatively low temperatures, and the resulting surface hydride may diffuse into the bulk region and be stabilized therein. At higher temperatures, surface hydroxyls can react to produce water and create additional oxygen vacancies, increasing its concentration, which controls the H2 /CeO2 interaction. The results demonstrate a large diversity of reaction pathways, which have to be taken into account for better understanding of reactivity of ceria-based catalysts in a hydrogen-rich atmosphere.

8.
Angew Chem Int Ed Engl ; 59(15): 6150-6154, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31930756

RESUMO

The emergence of ceria (CeO2 ) as an efficient catalyst for the selective hydrogenation of alkynes has attracted great attention. Intensive research effort has been devoted to understanding the underlying catalytic mechanism, in particular the H2 -CeO2 interaction. Herein, we show that the adsorption of propyne (C3 H4 ) on ceria, another key aspect in the hydrogenation of propyne to propene, strongly depends on the degree of reduction of the ceria surface and hydroxylation of the surface, as well as the presence of water. The dissociation of propyne and the formation of methylacetylide (CH3 CC-) have been identified through the combination of infrared reflection absorption spectroscopy (IRAS) and DFT calculations. We demonstrate that propyne undergoes heterolytic dissociation on the reduced ceria surface by forming a methylacetylide ion on the oxygen vacancy site and transferring a proton to the nearby oxygen site (OH group), while a water molecule that competes with the chemisorbed methylacetylide at the vacancy site assists the homolytic dissociation pathway by rebounding the methylacetylide to the nearby oxygen site.

9.
Angew Chem Int Ed Engl ; 58(41): 14686-14693, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31403236

RESUMO

The interaction of hydrogen with reduced ceria (CeO2-x ) powders and CeO2-x (111) thin films was studied using several characterization techniques including TEM, XRD, LEED, XPS, RPES, EELS, ESR, and TDS. The results clearly indicate that both in reduced ceria powders as well as in reduced single crystal ceria films hydrogen may form hydroxyls at the surface and hydride species below the surface. The formation of hydrides is clearly linked to the presence of oxygen vacancies and is accompanied by the transfer of an electron from a Ce3+ species to hydrogen, which results in the formation of Ce4+ , and thus in oxidation of ceria.

10.
J Phys Chem Lett ; 10(10): 2487-2492, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31039610

RESUMO

The interaction of water with the most prominent surfaces of Fe3O4, (001) and (111), is directly compared using a combination of temperature-programmed desorption, temperature-programmed low energy electron diffraction (TP LEED), and scanning probe microscopies. Adsorption on the (√2 × âˆš2)R45°-reconstructed surface of Fe3O4(001) is strongly influenced by the surface reconstruction, which remains intact at all coverages. Close to the completion of the first monolayer, however, the ad-layer adopts a longer-range (2 × 2) superstructure. This finding is discussed in the context of a similar (2 × 2) superstructure recently observed on the (111) facet, which exists over a significantly larger range of temperatures and coverages. In both cases, the long-range order is evidence that water-water interactions exert a significant influence on the structure already prior to the nucleation of the second layer. We conclude that the stability differences stem from the smaller unit cell on the (111) surface, and the ability of water to more easily form stable hexagonal ice-like structures on the hexagonal substrate.

11.
Langmuir ; 34(48): 14528-14536, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30412414

RESUMO

Thin films of ionic liquid 1-ethyl-3-methylimidazolium bis(fluoromethylsulfonyl)imide ([EMIm][FSI]) vapor-deposited on highly oriented pyrographite (HOPG) were studied by X-ray photoelectron spectroscopy and atomic force microscopy. The results revealed a reversible morphological transition from a "drop-on-layer" structure to a "flat-layer" structure at positive, and not at negative, polarization. The effect is rationalized in terms of electric-field-induced reduction of the liquid-solid transition temperature in the ionic liquid film, when its thickness is comparable to the charge screening length. The observed bias asymmetry of [EMIm][FSI] electrowetting on HOPG is tentatively explained by the bilayer structure at the interface driven by the affinity of the imidazolium ring to the HOPG surface.

12.
Phys Chem Chem Phys ; 20(23): 15764-15774, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29868669

RESUMO

We monitored adsorption of water on a well-defined Fe3O4(111) film surface at different temperatures as a function of coverage using infrared reflection-absorption spectroscopy, temperature programmed desorption, and single crystal adsorption calorimetry. Additionally, density functional theory was employed using a Fe3O4(111)-(2 × 2) slab model to generate 15 energy minimum structures for various coverages. Corresponding vibrational properties of the adsorbed water species were also computed. The results show that water molecules readily dissociate on regular surface Fetet1-O ion pairs to form "monomers", i.e., terminal Fe-OH and surface OH groups. Further water molecules adsorb on the hydroxyl covered surface non-dissociatively and form "dimers" and larger oligomers, which ultimately assemble into an ordered (2 × 2) hydrogen-bonded network structure with increasing coverage prior to the formation of a solid water film.

13.
J Am Chem Soc ; 140(19): 6164-6168, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29688718

RESUMO

We present a new polymorph of the two-dimensional (2D) silica film with a characteristic 'zigzag' line structure and a rectangular unit cell which forms on a Ru(0001) metal substrate. This new silica polymorph may allow for important insights into growth modes and transformations of 2D silica films as a model system for the study of glass transitions. Based on scanning tunneling microscopy, low energy electron diffraction, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy measurements on the one hand, and density functional theory calculations on the other, a structural model for the 'zigzag' polymorph is proposed. In comparison to established monolayer and bilayer silica, this 'zigzag' structure system has intermediate characteristics in terms of coupling to the substrate and stoichiometry. The silica 'zigzag' phase is transformed upon reoxidation at higher annealing temperature into a SiO2 silica bilayer film which is chemically decoupled from the substrate.

14.
Angew Chem Int Ed Engl ; 57(5): 1261-1265, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29235223

RESUMO

Ultrathin (monolayer) films of transition metal oxides grown on metal substrates have recently received considerable attention as promising catalytic materials, in particular for low-temperature CO oxidation. The reaction rate on such systems often increases when the film only partially covers the support, and the effect is commonly attributed to the formation of active sites at the metal/oxide boundary. By studying the structure and reactivity of FeO(111) films on Pt(111), it is shown that, independent of the film coverage, CO oxidation takes place at the interface between reduced and oxidized phases in the oxide film formed under reaction conditions. The promotional role of a metal support is to ease formation of the reduced phase by reaction between CO adsorbed on metal and oxygen at the oxide island edge.

15.
Angew Chem Int Ed Engl ; 57(5): 1409-1413, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29205761

RESUMO

The initial stages of water adsorption on magnetite Fe3 O4 (111) surface and the atomic structure of the water/oxide interface remain controversial. Herein, we provide experimental results obtained by infrared reflection-absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD), corroborated by density functional theory (DFT) calculations showing that water readily dissociates on Fetet sites to form two hydroxo species. These act as an anchor for water molecules to form a dimer complex which self-assembles into an ordered (2×2) structure. Water ad-layer ordering is rationalized in terms of a cooperative effect induced by a hydrogen-bonding network.

16.
ACS Appl Mater Interfaces ; 9(49): 43061-43071, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29156127

RESUMO

Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H2/CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H2, N2, CO, and CO2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3He/4He, He/natural gas, and H2/CO separations.

17.
J Am Chem Soc ; 139(48): 17608-17616, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29131603

RESUMO

Ceria (CeO2) has recently been found to be a promising catalyst in the selective hydrogenation of alkynes to alkenes. This reaction occurs primarily on highly dispersed metal catalysts, but rarely on oxide surfaces. The origin of the outstanding activity and selectivity observed on CeO2 remains unclear. In this work, we show that one key aspect of the hydrogenation reaction-the interaction of hydrogen with the oxide-depends strongly on the presence of O vacancies within CeO2. Through infrared reflection absorption spectroscopy on well-ordered CeO2(111) thin films and density functional theory (DFT) calculations, we show that the preferred heterolytic dissociation of molecular hydrogen on CeO2(111) requires H2 pressures in the mbar regime. Hydrogen depth profiling with nuclear reaction analysis indicates that H species stay on the surface of stoichiometric CeO2(111) films, whereas H incorporates as a volatile species into the volume of partially reduced CeO2-x(111) thin films (x ∼ 1.8-1.9). Complementary DFT calculations demonstrate that oxygen vacancies facilitate H incorporation below the surface and that they are the key to the stabilization of hydridic H species in the volume of reduced ceria.

18.
Phys Chem Chem Phys ; 19(6): 4231-4242, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28116388

RESUMO

Room temperature adsorption of carbon dioxide (CO2) on monocrystalline CaO(001) thin films grown on a Mo(001) substrate was studied by infrared reflection-absorption spectroscopy (IRAS) and quantum chemical calculations. For comparison, CO2 adsorption was examined on poorly ordered, nanoparticulate CaO films prepared on Ru(0001). For both systems, CO2 readily adsorbs on the clean CaO surface. However, additional bands were observable on the CaO/Ru(0001) films compared with CaO/Mo(001), because the stricter IRAS surface selection rules do not apply to adsorption on the disordered thin films grown on Ru(0001). Spectral evolution with increasing exposure of the IRA bands suggested the presence of several adsorption sites which are consecutively populated by CO2. Density functional calculations showed that CO2 adsorption occurs as monodentate surface carbonate (CO32-) species at monatomic step sites and other low-coordinated sites, followed by formation of carbonates on terraces, which dominate at increasing CO2 exposure. To explain the coverage-dependent IRAS results, we propose CO2 surface islanding from the onset, most likely in the form of pairs and other chain-like species, which were calculated as thermodynamically favorable. The calculated adsorption energy for isolated CO2 on the terrace sites (184 ± 10 kJ mol-1) is larger than the adsorption energy obtained by temperature programmed desorption (∼120-140 kJ mol-1) and heat of adsorption taken from microcalorimetry measurements at low coverage (∼125 kJ mol-1). However, the calculated adsorption energies become less favorable when carbonate chains intersect on CaO terraces, forming kinks. Furthermore, our assignments of the initial stages of CO2 adsorption are consistent with the observed coverage effect on the CO2 adsorption energy measured by microcalorimetry and the IRAS results.

19.
Phys Chem Chem Phys ; 18(36): 25027-25035, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711438

RESUMO

In attempts to fabricate model systems of Fe-containing aluminosilicates, we studied the incorporation of iron into silicate and aluminosilicate bilayer films grown on Ru(0001). Structural characterization was performed by low energy electron diffraction, X-ray photoelectron spectroscopy, infrared reflection-absorption spectroscopy and scanning tunneling microscopy. The experimental results show that even at low concentrations Fe does not randomly substitute Si(Al) cations in the silicate framework, but segregates into a pure silicate (aluminosilicate) phase and an Fe-silicate phase which is formed by an FeO(111)-like layer underneath a silicate layer. At high Fe/(Si + Al) molar ratios, the resulting films showed two phases depending on the annealing temperature. In both phases, the surface exposes a silicate layer and the bottom layer is dominated by FeO. The Al ions seem to be present in the bottom layer at relatively low oxidation temperatures, but segregate as alumina clusters at the surface at higher temperatures. The results suggest that the formation of in-frame Fe species in silicalites and zeolites is thermodynamically unfavourable. This study provides further steps towards the rational design of model systems for studying surface chemistry of a wide class of layered minerals.

20.
Phys Chem Chem Phys ; 18(5): 3755-64, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26762556

RESUMO

Water adsorption on a double-layer silicate film was studied by using infrared reflection-absorption spectroscopy, thermal desorption spectroscopy and scanning tunneling microscopy. Under vacuum conditions, small amounts of silanols (Si-OH) could only be formed upon deposition of an ice-like (amorphous solid water, ASW) film and subsequent heating to room temperature. Silanol coverage is considerably enhanced by low-energy electron irradiation of an ASW pre-covered silicate film. The degree of hydroxylation can be tuned by the irradiation parameters (beam energy, exposure) and the ASW film thickness. The results are consistent with a generally accepted picture that hydroxylation occurs through hydrolysis of siloxane (Si-O-Si) bonds in the silica network. Calculations using density functional theory show that this may happen on Si-O-Si bonds, which are either parallel (i.e., in the topmost silicate layer) or vertical to the film surface (i.e., connecting two silicate layers). In the latter case, the mechanism may additionally involve the reaction with a metal support underneath. The observed vibrational spectra are dominated by terminal silanol groups (ν(OD) band at 2763 cm(-1)) formed by hydrolysis of vertical Si-O-Si linkages. Film dehydroxylation fully occurs only upon heating to very high temperatures (∼ 1200 K) and is accompanied by substantial film restructuring, and even film dewetting upon cycling hydroxylation/dehydroxylation treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...