Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743098

RESUMO

Leukemia is one of the most common primary malignancies of the hematologic system in both children and adults and remains a largely incurable or relapsing disease. The elucidation of disease subtypes based on mutational profiling has not improved clinical outcomes. IDH1/2 are critical enzymes of the TCA cycle that produces α-ketoglutarate (αKG). However, their mutated version is well reported in various cancer types, including leukemia, which produces D-2 hydroxyglutarate (D-2HG), an oncometabolite. Recently, some studies have shown that wild-type IDH1 is highly expressed in non-small cell lung carcinoma (NSCLC), primary glioblastomas (GBM), and several hematological malignancies and is correlated with disease progression. This work shows that the treatment of wild-type IDH1 leukemia cells with a specific IDH1 inhibitor shifted leukemic cells toward glycolysis from the oxidative phosphorylation (OXPHOS) phenotype. We also noticed a reduction in αKG in treated cells, possibly suggesting the inhibition of IDH1 enzymatic activity. Furthermore, we found that IDH1 inhibition reduced the metabolites related to one-carbon metabolism, which is essential for maintaining global methylation in leukemic cells. Finally, we observed that metabolic alteration in IDH1 inhibitor-treated leukemic cells promoted reactive oxygen species (ROS) formation and the loss of mitochondrial membrane potential, leading to apoptosis in leukemic cells. We showed that targeting wild-type IDH1 leukemic cells promotes metabolic alterations that can be exploited for combination therapies for a better outcome.


Assuntos
Isocitrato Desidrogenase , Leucemia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos , Metaboloma , Mutação
2.
Antioxidants (Basel) ; 11(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35326111

RESUMO

Venetoclax (ABT199) is a selective B-cell lymphoma 2 (BCL-2) inhibitor. The US FDA recently approved it to be used in combination with low-dose cytarabine or hypomethylating agents in acute myeloid leukemia (AML) or elderly patients non-eligible for chemotherapy. However, acquiring resistance to venetoclax in AML patients is the primary cause of treatment failure. To understand the molecular mechanisms inherent in the resistance to BCL-2 inhibitors, we generated a venetoclax-resistant cell line model and assessed the consequences of this resistance on its metabolic pathways. Untargeted metabolomics data displayed a notable impact of resistance on the PI3K/AKT pathway, the Warburg effect, glycolysis, the TCA cycle, and redox metabolism. The resistant cells showed increased NADPH and reduced glutathione levels, switching their energy metabolism towards glycolysis. PI3K/AKT pathway inhibition shifted resistant cells towards oxidative phosphorylation (OXPHOS). Our results provide a metabolic map of resistant cells that can be used to design novel metabolic targets to challenge venetoclax resistance in AML.

3.
Metabolites ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35323710

RESUMO

Tumor cells detached from the extracellular matrix (ECM) undergo anoikis resistance and metabolic reprogramming to facilitate cancer cell survival and promote metastasis. During ECM detachment, cancer cells utilize genomic methylation to regulate transcriptional events. One-carbon (1C) metabolism is a well-known contributor of SAM, a global substrate for methylation reactions, especially DNA methylation. DNA methylation-mediated repression of NK cell ligands MICA and MICB during ECM detachment has been overlooked. In the current work, we quantitated the impact of ECM detachment on one-carbon metabolites, expression of 1C regulatory pathway genes, and total methylation levels. Our results showed that ECM detachment promotes the accumulation of one-carbon metabolites and induces regulatory pathway genes and total DNA methylation. Furthermore, we measured the expression of well-known targets of DNA methylation in NK cell ligands in cancer cells, namely, MICA/B, during ECM detachment and observed low expression compared to ECM-attached cancer cells. Finally, we treated the ECM-detached cancer cells with vitamin C (a global methylation inhibitor) and observed a reduction in the promoter methylation of NK cell ligands, resulting in MICA/B re-expression. Treatment with vitamin C was also found to reduce global DNA methylation levels in ECM-detached cancer cells.

4.
Front Cell Dev Biol ; 10: 780176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186918

RESUMO

Epithelial cancer cells that lose attachment from the extracellular matrix (ECM) to seed in a distant organ often undergo anoikis's specialized form of apoptosis. Recently, KDM3A (H3K9 demethylase) has been identified as a critical effector of anoikis in cancer cells. However, whether other histone demethylases are involved in promoting or resisting anoikis remains elusive. We screened the major histone demethylases and found that both H3K27 histone demethylases, namely, KDM6A/B were highly expressed during ECM detachment. Inhibition of the KDM6A/B activity by using a specific inhibitor results in reduced sphere formation capacity and increased apoptosis. Knockout of KDM6B leads to the loss of stem cell properties in solitary cells. Furthermore, we found that KDM6B maintains stemness by transcriptionally regulating the expression of stemness genes SOX2, SOX9, and CD44 in detached cells. KDM6B occupies the promoter region of both SOX2 and CD44 to regulate their expression epigenetically. We also noticed an increased occupancy of the HIF1α promoter by KDM6B, suggesting its regulatory role in maintaining hypoxia in detached cancer cells. This observation was further strengthened as we found a significant positive association in the expression of both KDM6B and HIF1α in various cancer types. Overall, our results reveal a novel transcriptional program that regulates resistance against anoikis and maintains stemness-like properties.

5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638812

RESUMO

Extracellular vesicles (EVs) carry important biomolecules, including metabolites, and contribute to the spread and pathogenesis of some viruses. However, to date, limited data are available on EV metabolite content that might play a crucial role during infection with the SARS-CoV-2 virus. Therefore, this study aimed to perform untargeted metabolomics to identify key metabolites and associated pathways that are present in EVs, isolated from the serum of COVID-19 patients. The results showed the presence of antivirals and antibiotics such as Foscarnet, Indinavir, and lymecycline in EVs from patients treated with these drugs. Moreover, increased levels of anti-inflammatory metabolites such as LysoPS, 7-α,25-Dihydroxycholesterol, and 15-d-PGJ2 were detected in EVs from COVID-19 patients when compared with controls. Further, we found decreased levels of metabolites associated with coagulation, such as thromboxane and elaidic acid, in EVs from COVID-19 patients. These findings suggest that EVs not only carry active drug molecules but also anti-inflammatory metabolites, clearly suggesting that exosomes might play a crucial role in negotiating with heightened inflammation during COVID-19 infection. These preliminary results could also pave the way for the identification of novel metabolites that might act as critical regulators of inflammatory pathways during viral infections.


Assuntos
COVID-19/metabolismo , Vesículas Extracelulares/metabolismo , Metaboloma , SARS-CoV-2/fisiologia , Adulto , Anti-Inflamatórios/metabolismo , COVID-19/patologia , Vesículas Extracelulares/patologia , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade
6.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067305

RESUMO

Leukemia is persistently a significant cause of illness and mortality worldwide. Urolithins, metabolites of ellagic acid and ellagitannins produced by gut microbiota, showed better bioactive compounds liable for the health benefits exerted by ellagic acid and ellagitannins containing pomegranate and walnuts. Here, we assessed the potential antileukemic activities of both urolithin A and urolithin B. Results showed that both urolithin A and B significantly inhibited the proliferation of leukemic cell lines Jurkat and K562, among which urolithin A showed the more prominent antiproliferative capability. Further, urolithin treatment alters leukemic cell metabolism, as evidenced by increased metabolic rate and notable changes in glutamine metabolism, one-carbon metabolism, and lipid metabolism. Next, we evidenced that both urolithins equally promoted apoptosis in leukemic cell lines. Based on these observations, we concluded that both urolithin A and B alter leukemic cell metabolome, resulting in a halt of proliferation, followed by apoptosis. The data can be used for designing new combinational therapies to eradicate leukemic cells.


Assuntos
Apoptose/efeitos dos fármacos , Cumarínicos/farmacologia , Leucemia/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Elágico/farmacologia , Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Taninos Hidrolisáveis/farmacologia , Juglans/química , Células Jurkat , Células K562 , Metabolismo dos Lipídeos/efeitos dos fármacos , Nozes/química , Punica granatum/química
7.
Biol Chem ; 402(6): 749-757, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33951765

RESUMO

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality around the world. Early diagnosis of CVD could provide the opportunity for sensible management and better clinical outcome along with the prevention of further progression of the disease. In the current study, we used an untargeted metabolomic approach to identify possible metabolite(s) that associate well with the CVD and could serve either as therapeutic target or disease-associated metabolite. We identified 26 rationally adjusted unique metabolites that were differentially present in the serum of CVD patients compared with healthy individuals, among them 15 were found to be statistically significant. Out of these metabolites, we identified some novel metabolites like UDP-l-rhamnose and N1-acetylspermidine that have not been reported to be linked with CVD directly. Further, we also found that some metabolites like ethanolamide, solanidine, dimethylarginine, N-acetyl-l-tyrosine, can act as a discriminator of CVD. Metabolites integrating pathway enrichment analysis showed enrichment of various important metabolic pathways like histidine metabolism, methyl histidine metabolism, carnitine synthesis, along with arginine and proline metabolism in CVD patients. Our study provides a great opportunity to understand the pathophysiological role and impact of the identified unique metabolites and can be extrapolated as specific CVD specific metabolites.


Assuntos
Doenças Cardiovasculares/metabolismo , Metabolômica , Adulto , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Front Oncol ; 11: 612778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718166

RESUMO

Most of the cancer related deaths are caused mainly by metastasis. Therefore, it is highly important to unfold the major mechanisms governing metastasis process in cancer. Throughout the metastatic cascade, cells need the ability to survive without attachment to neighboring cells and the original Extra Cellular Matrix (ECM). Recent reports showed that loss of ECM attachment shifts cancer cell metabolism towards glycolysis mostly through hypoxia. However, AMPK, a master metabolic regulator was also found to be upregulated under ECM detached conditions. Therefore, in this work we aimed to understand the consequences of targeting AMPK and other metabolic kinases by a broad kinase inhibitor namely Compound C in ECM detached cancer cells. Results showed that Compound C impacts glycolysis as evident by increased levels of pyruvate, but reduces its conversion to lactate thereby negatively regulating the Warburg effect. Simultaneously, Compound C induces block at multiple levels in TCA cycle as evident from accumulation of various TCA metabolites. Interestingly Compound C significantly reduces glutamine and reduced glutathione levels, suggesting loss of antioxidant potential of ECM detached cancer cells. Further, we found increased in metabolites associated with nucleotide synthesis, one carbon metabolism and PPP pathway during Compound C treatment of ECM detached cells. Finally, we also found induction in metabolites associated with DNA damage in ECM detached cancer cells during Compound C treatment, suggesting DNA damage regulatory role of metabolic kinases. Overall, our results showed that Compound C represses pyruvate to lactate conversion, reduces antioxidant potential and invokes DNA damage in ECM detached cancer cells. Our data provides a comprehensive metabolic map of ECM detached cancer cells that can be targeted with a broad kinase inhibitor, is Compound C. The data can be used for designing new combinational therapies to eradicate ECM detached cancer cells.

9.
Semin Cancer Biol ; 69: 129-139, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866477

RESUMO

Nano metal organic frameworks (NMOFs) belong to the group of nanoporous materials. Over the decades, the conducted researches explored the area for the potential applications of NMOFs in areas like biomedical, chemical engineering and materials science. Recently, NMOFs have been explored for their potential use in cancer diagnosis and therapeutics. The excellent physico-chemical features of NMOFs also make them a potential candiadate to facilitate drug design, delivery and storage against cancer cells. In this review, we have explored the characterstic features, synthesis methods, NMOFs based drug delivery, diagnosis and imaging in various cancer types. In addition to this, we have also pondered on the stability and toxicological concerns of NMOFs. Despite, a significant research has been done for the potential use of NMOFs in cancer diagonostic and therapeutics, more information regarding the stability, in-vivo clearance, toxicology, and pharmacokinetics is still needed to ehnace the use of NMOFs in cancer diagonostic and therapeutics.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas/administração & dosagem , Nanomedicina , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Humanos , Estruturas Metalorgânicas/química , Nanopartículas/química , Neoplasias/patologia
10.
Front Oncol ; 10: 804, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509585

RESUMO

Information regarding transcriptome and metabolome has significantly contributed to identifying potential therapeutic targets for the management of a variety of cancers. Obesity has profound effects on both cancer cell transcriptome and metabolome that can affect the outcome of cancer therapy. The information regarding the potential effects of obesity on breast cancer (BC) transcriptome, metabolome, and its integration to identify novel pathways related to disease progression are still elusive. We assessed the whole blood transcriptome and serum metabolome, as circulating metabolites, of obese BC patients compared them with non-obese BC patients. In these patients' samples, 186 significant differentially expressed genes (DEGs) were identified, comprising 156 upregulated and 30 downregulated. The expressions of these gene were confirmed by qRT-PCR. Furthermore, 96 deregulated metabolites were identified as untargeted metabolomics in the same group of patients. These detected DEGs and deregulated metabolites enriched in many cellular pathways. Further investigation, by integration analysis between transcriptomics and metabolomics data at the pathway levels, revealed seven unique enriched pathways in obese BC patients when compared with non-obese BC patients, which may provide resistance for BC cells to dodge the circulating immune cells in the blood. In conclusion, this study provides information on the unique pathways altered at transcriptome and metabolome levels in obese BC patients that could provide an important tool for researchers and contribute further to knowledge on the molecular interaction between obesity and BC. Further studies are needed to confirm this and to elucidate the exact underlying mechanism for the effects of obesity on the BC initiation or/and progression.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32435625

RESUMO

Aspergillus flavus and Fusarium solani are the predominant causative agents of mycotic keratitis in the tropical part of the world. Tear proteins play a major role in the innate immune response against these fungal infections as has been shown by the presence of complement proteins and neutrophil extracellular trap proteins in keratitis patients tear. In this study, we established the presence of the components of the alternate pathway of complement system and their functional state in the tear film of mycotic keratitis patients. The complement proteins namely, C3 and CFH were found only in the open-eye tear of patients but not in control individuals. In vitro analysis showed binding of purified C3b and CFH to fungal spores, which confirmed that the spores can provide a foreign surface for forming the complement complex. Analysis of spore bound tear proteins by mass spectrometry exhibited the presence of known proteins of the alternate pathway complement cascade in keratitis patient tear. Hemolytic assay using rabbit RBC confirmed the presence of a functional alternate pathway of complement cascade in the tear proteome of the patients. The presence of negative regulators, CFH and CFI, in the patient tear indicate that the complement activity is tightly regulated during fungal infection. Mass spectrometry data show vitronectin and clusterin, two known inhibitors of the membrane attack complex only in the patient tear. These data demonstrate the activation of the alternate pathway of complement cascade during the early stages of infection. Interestingly, the production of multiple negative regulators of complement cascade implies the pathogen can effectively evade the host complement system during infection.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Animais , Aspergillus flavus , Proteínas do Sistema Complemento , Fusarium , Humanos , Coelhos
12.
Data Brief ; 23: 103817, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372461

RESUMO

Fungal keratitis is a major sight-threatening corneal infection: and mycotic keratitis is more common in tropical parts of the world including India. Aspergillus flavus and Fusarium are the predominant causative agents of corneal infection. We extracted conidial surface proteins of A. flavus from saprophyte and clinical isolates and analyzed the proteins using high resolution mass spectrometry. The data revealed ecotype specific alteration in surface proteome since the proteome profile of the clinical isolates and saprophyte showed significant differences. Detailed examination of the mass spec data of RodA proteins extracted from polyacrylamide gels revealed the presence of two proteoforms of this protein. We also identified the mechanism of formation of these two isoforms. Detailed analysis of this data and the conclusions derived are described in the article, "Identification of the proteoforms of surface localized Rod A of A. flavus and determination of the mechanism of proteoform generation" [1].

13.
J Proteomics ; 193: 62-70, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30557665

RESUMO

Fungal keratitis is a serious, potentially sight-threatening corneal infection that is more prevalent in the tropical parts of the world including India, and A. flavus and Fusarium solani are the predominant etiological agents. The surface of fungal conidia is covered by hydrophobin family proteins, effectively masking the conidial antigens from immune cells. In this study, we report that the outer cell wall layer of A. flavus conidia contain Rod A as well as other hydrophobins, which could be extracted by formic acid. Analysis of these surface proteins by mass spectrometry showed the presence of rodlet forming hydrophobins and other membrane and antigenic proteins. Our analysis revealed that Rod A existed as two proteoforms on the conidial surface. These proteoforms were separated using polyacrylamide gel electrophoresis and the amino acid sequence of these proteoforms was determined by high resolution mass spectrometry. PCR analysis of the mRNA encoding the Rod A showed the retention of intron one, which results in the formation of a truncated proteoform two. This is the first report in which the presence of RodA and its proteoforms and their mechanism of formation has been demonstrated in the corneal pathogenic fungus A. flavus. SIGNIFICANCE: A. flavus is a common fungal pathogen in tropical countries playing a predominant role in causing mycotic keratitis in humans. Surface of fungal conidia is immunologically inert primarily due to the hydrophobin family proteins forming a rodlet layer and masking the conidia from immune cells. In this study we demonstrated the existence two proteoforms of RodA/hydrophobin A and intron retention is shown to be responsible for the formation of one of the proteoforms. In addition, the spore surface proteins of A.flavus corneal isolates and saprophyte are distinctly different, which indicate the spore surface protein profile is ecotype specific. This is the first report showing the presence of two proteoforms of RodA on A.flavus conidial surface and demonstration of the mechanism of formation of the proteoforms.


Assuntos
Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Esporos Fúngicos/metabolismo , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esporos Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...