Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
7.
Int Immunopharmacol ; 118: 110046, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989890

RESUMO

Vincristine (VCR) is a well-known chemotherapeutic agent that frequently triggers neuropathic pain. Ajugarin-I (Aju-I) isolated from Ajuga bracteosa exerts antioxidant, anti-inflammatory, and neuroprotective properties. The present study was designed to investigate the ameliorative potential of Aju-I against VCR-induced neuropathic pain and explored the underlying mechanism involved. The neuroprotective potential of Aju-I was first confirmed against hydrogen peroxide (H2O2)-induced cytotoxicity and oxidative stress in PC12 cells. For neuropathic pain induction, vincristine was given intraperitoneally (i.p.) into adult male albino mice (BALB/c) of the same age (8-12 weeks old) for 10 days (days 1-10). Aju-I (1 and 5 mg/kg) doses were administered from day 11 to 21 intraperitoneally (i.p.) after the neuropathic induction. Initially, behavioral tests such as thermal hyperalgesia, mechanical allodynia, and cold allodynia were performed to investigate the antinociceptive potential of Ajugarin-I (1 and 5 mg/kg, b.w). The nuclear factor-erythroid factor 2-related factor 2(Nrf2), nuclear factor-κB (NF-κB), BCL2-associated × protein (Bax), and B-cell-lymphoma-2 (Bcl-2) signaling proteins were determined by immunohistochemistry and western blot. Additionally, inflammatory cytokines, antioxidant, and oxidative stress parameters were also measured in the spinal cord and sciatic nerve. The behavioral results demonstrated that Aju-I (5 mg/kg) markedly alleviated VCR-induced neuropathic pain behaviors including hyperalgesia and allodynia. It reversed the histological alterations caused by VCR in the sciatic nerve, spinal cord, and brain. It significantly alleviated oxidative stress and inflammation by regulating the immunoreactivity of Nrf2/NF-κB signaling. It suppressed apoptosis by regulating the immunoreactivity of Bcl-2/Bax and Caspase-3. The flow cytometry and comet analysis also confirmed its anti-apoptotic potential. It considerably improved the antioxidant status and mitigated VCR-induced inflammatory cytokines. High-performance liquid chromatography (HPLC) analysis indicated that Aju-I crosses the blood-brain barrier (BBB) and penetrated the brain tissue. These findings suggest that Aju-I treatment inhibited vincristine-induced neuropathy via regulation of Nrf2/NF-κB and Bcl2 signaling.


Assuntos
NF-kappa B , Neuralgia , Ratos , Animais , Camundongos , Masculino , Vincristina/farmacologia , NF-kappa B/metabolismo , Hiperalgesia/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Peróxido de Hidrogênio , Proteína X Associada a bcl-2 , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Citocinas/metabolismo
8.
Food Chem Toxicol ; 175: 113742, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958385

RESUMO

Diabetic neuropathic pain is one of the microvascular complications of diabetes mellitus characterized by symmetrical pain and sensory abnormalities. A steroidal lactone isolated from the datura innoxa plant, withametelin (WMT), exhibited significant neuroprotective, anti-inflammatory, antioxidant, and anticancer properties. The current study aimed to investigate anti-neuropathic pain activity and the molecular mechanism of WMT against streptozotocin (STZ)-induced diabetic neuropathy. Rats were given a single injection of STZ (60 mg/kg, intraperitoneally (i.p.)) for induction of diabetes on the first day of the study. After the onset of diabetic neuropathy, pregabalin (10 mg/kg, i.p.) and WMT (0.1 and 1 mg/kg, i.p.) treatments were started from day 14 up to day 42. It was found that STZ-induced neuropathic pain behaviors were markedly reduced by WMT. It inhibited the STZ-associated histopathological changes and genotoxicity in the sciatic nerve and spinal cord. Additionally, Fourier transforms infrared (FTIR) spectroscopy results revealed that STZ-induced alterations in the biochemical components of the sciatic nerve's myelin sheath were inhibited by WMT. In the spinal cord, it markedly reduced the immunoreactivity of mitogen-activated protein kinases (MAPKs) signaling components such as p38-MAPK, c-Jun N-terminal kinase (JNK), extracellular-signal-regulated-kinase (ERK), and activator-protein 1 (AP-1). It also reduced the expression levels of nuclear factor-kappa-B (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). The production of inflammatory cytokines was considerably reduced by WMT. This study provides convincing evidence that WMT treatment attenuated STZ-induced diabetic neuropathic pain by inhibition of MAPK/NF-κB signaling.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Animais , Ratos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Neuropatias Diabéticas/complicações , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lactonas , Lipopolissacarídeos , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Neuralgia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Estreptozocina
9.
Phytother Res ; 37(6): 2326-2343, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36789832

RESUMO

Multiple sclerosis (MS) is a debilitating neurodegenerative autoimmune disease of the central nervous system (CNS). The current study aimed to investigate the neuroprotective properties of Ajugarin-I (Aju-I) against the experimental autoimmune encephalomyelitis (EAE) model of MS and explored the underlying mechanism involved. The protective potential of Aju-I was first confirmed against glutamate-induced HT22 cells and hydrogen peroxide (H2 O2 )-induced BV2 cells. Next, an EAE model has been established to investigate the mechanisms of MS and identify potential candidates for MS treatment. The behavioral results demonstrated that Aju-I post-immunization treatment markedly reduced the EAE-associated clinical score, motor impairment, and neuropathic pain. Evans blue and fluorescein isothiocyanate extravasation in the brain were markedly reduced by Aju-I. It effectively restored the EAE-associated histopathological changes in the brain and spinal cord. It markedly attenuated EAE-induced inflammation in the CNS by reducing the expression levels of p-38/JNK/NF-κB but increased the expression of IkB-α. It suppressed oxidative stress by increasing the expression of Nrf2 but decreasing the expression of keap-1. It suppressed EAE-induced apoptosis in the CNS by regulating Bax/Bcl-2 and Caspase-3 expression. Taken together, this study suggests that Aju-I treatment exhibits neuroprotective properties in the EAE model of MS via regulation of MAPK/NF-κB, Nrf2/Keap-1, and Bcl2/Bax signaling.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , NF-kappa B , Fator 2 Relacionado a NF-E2 , Proteína X Associada a bcl-2 , Camundongos Endogâmicos C57BL
10.
Phytother Res ; 37(4): 1606-1623, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36757068

RESUMO

Cancer is the leading cause of mortality and morbidity worldwide, and its cases are rapidly increasing every year. Several factors contribute to the development of tumorigenesis. including radiation, dietary lifestyle, smoking, environmental, and genetic factors. The cell cycle is regulated by a variety of molecular signaling proteins. However, when the proteins involved in the cell cycle regulation are altered, cellular growth and proliferation are significantly affected. Natural products provide an important source of new drug development for a variety of ailments. including cancer. Phytosterols (PSs) are an important class of natural compounds reported for numerous pharmacological activities, including cancer. Various PSs, such as ergosterol, stigmasterol, sitosterol, withaferin A, etc., have been reported for their anti-cancer activities against a variety of cancer by modulating the tumor microenvironment via molecular signaling pathways discussed within the article. These signaling pathways are associated with the production of pro-inflammatory mediators, growth factors, chemokines, and pro-apoptotic and anti-apoptotic genes. These mediators and their upstream signaling are very active within the variety of tumors and by modulating these signalings, thus PS exhibits promising anti-cancer activities. However, further high-quality studies are needed to firmly establish the clinical efficacy as well the safety of the phytosterols.


Assuntos
Neoplasias , Fitosteróis , Humanos , Fitosteróis/farmacologia , Microambiente Tumoral , Divisão Celular , Estigmasterol
11.
Life Sci ; 312: 121202, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414090

RESUMO

AIMS: The current study explored the anti-nociceptive activity of magnolol in post-incisional inflammatory nociceptive pain. MAIN METHODS: Preliminary, the anti-inflammatory, antioxidant, and cytoprotective potential of magnolol were confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. Next, an in-vivo model of planter incision surgery was established in BALB/c mice. Tramadol 50 mg/kg intraperitoneal (i.p.) and magnolol (0.1, 1, 10 mg/kg i.p. + 10 mg/kg intra planter) were administered after plantar incision surgery and behavior parameters were measured. KEY FINDINGS: The results indicate that magnolol significantly suppressed post-incision-induced mechanical allodynia, thermal hyperalgesia, and paw edema. Magnolol promisingly inhibited post-incision induces nitric oxide (NO), malondialdehyde (MDA), eosinophil peroxidase (EPO), and neutrophil infiltration. Magnolol strongly attenuated post-incision inducing the release of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and inhibited deoxyribonucleic acid (DNA) fragmentation. Magnolol markedly reverses post-incisional histopathological changes and biochemical composition of the incised paw. Magnolol markedly down-regulated post-incisional increase expression of transient receptor potential vanilloid 1 (TRPV1), purinergic (P2Y) nociceptors as well as toll-like receptor 4 (TLR4), nuclear factor kappa light chain enhancer of activated B cell (NF-κB), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) while upregulating the expression of inhibitor of nuclear kappa B alpha (IκB-α). SIGNIFICANCE: The present study strongly suggests that magnolol significantly suppressed post-incisional inflammatory nociceptive pain by targeting TRPV1/P2Y and TLR4/NF-κB signaling.


Assuntos
NF-kappa B , Dor Nociceptiva , Animais , Camundongos , Ratos , Citocinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Canais de Cátion TRPV
12.
Pharmacol Res ; 183: 106392, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940396

RESUMO

This study aimed to investigate the anti-neuropathic pain activity and its underlying molecular mechanism of Ajugarin-I (Aju-I) in a rat model of diabetic neuropathic pain. The rats were given a single injection of 60 mg/kg of streptozotocin (STZ) intraperitoneally (i.p.) to induce diabetic neuropathic pain. After two weeks, rats were given Aju-I (1 and 5 mg/kg/day) i.p. for four consecutive weeks. The results demonstrated that in diabetic rats, treatment with Aju-I decreased STZ-induced hyperglycemia. It reduced the pain hypersensitivity (mechanical, thermal, and cold nociception) caused by STZ. It effectively restored STZ-associated pathological changes in the pancreas. In the sciatic nerve and spinal cord, it attenuated STZ-associated histopathological alterations and DNA damage. It suppressed oxidative stress by increasing the expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2), thioredoxin (Trx), and heme oxygenase (HO-1), but decreasing the immunoreactivity of Kelch-like ECH-associated protein 1 (Keap1). Additionally, TRPV1 (transient receptor potential vanilloid 1) and TRPM8 (transient receptor potential melastatin 8) expression levels were considerably reduced by Aju-I treatment. It enhanced antioxidant levels and suppressed inflammatory cytokines production. Taken together, this research suggests that Aju-I treatment reduces pain behaviors in the STZ model of diabetic neuropathy via modulating Nrf2/Keap-1/HO-1 signaling and TRPV1/TRPM8 nociceptors.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Canais de Cátion TRPM , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nociceptores/metabolismo , Ratos , Estreptozocina/efeitos adversos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo
13.
Molecules ; 27(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35807562

RESUMO

Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (-10.4 kcal/mol), poncirin had the highest binding energy (-9.4 kcal/mol) with NF-κB and JNK (-9.5 kcal/mol), respectively, and icariin had the highest binding affinity (-9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin's greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood-brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.


Assuntos
Receptor 4 Toll-Like , Fator de Transcrição AP-1 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NF-kappa B/metabolismo , Rutina/farmacologia , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
14.
Naunyn Schmiedebergs Arch Pharmacol ; 395(10): 1167-1188, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35851927

RESUMO

The environmental factors and genetic vulnerability trigger the inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn's disease. Furthermore, the oxidative stress and inflammatory cytokines have been implicated in the aggravation of the IBDs. The aim of the present study was to investigate the effect of N-(benzylidene)-2-((2-hydroxynaphthalen-1-yl)diazenyl)benzohydrazides (NCHDH and NTHDH) compounds against the DSS-induced colitis in mice. The colitis was induced by 5% dextran sulfate sodium (DSS) dissolved in normal saline for 5 days. The effect of the NCHDH and NTHDH on the behavioral, biochemical, histological, and immunohistological parameters was assessed. The NCHDH and NTHDH treatment improved the behavioral parameters such as food intake, disease activity index, and diarrhea score significantly compared to DSS control. The NCHDH and NTHDH treatments significantly increased the antioxidant enzymes, whereas oxidative stress markers were markedly reduced. Similarly, the NCHDH and NTHDH treatments significantly suppressed the activity of nitric oxide (NO), myeloperoxidase (MPO), and eosinophil peroxidase (EPO). The histological studies showed a significant reduction in inflammation, immune cell infiltration, and fibrosis in the NCHDH- and NTHDH-treated groups. The immunohistochemical results demonstrated that NCHDH and NTHDH treatments markedly increase the expression level of Nrf2, HO-1 (hemeoxygenase-1), TRX (thioredoxin reductase), and IκB compared to the DSS-induced group. In the same way, the NCHDH and NTHDH significantly reduced the NF-κB and COX-2 (cyclooxygenase-2) expression levels. The NCHDH and NTHDH treatment significantly improved the symptoms associated with colitis via inducing antioxidants and attenuating oxidative stress markers.


Assuntos
Colite , NF-kappa B , Animais , Antioxidantes/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Hidrazinas/efeitos adversos , Hidrazinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo
15.
BMC Complement Med Ther ; 22(1): 158, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698107

RESUMO

BACKGROUND: The 7ß-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid isolated from the Tussilago farfara Linneaus (Asteraceae), was evaluated against acute Carrageenan and chronic complete Freund's adjuvant (CFA)-induced arthritis in mice. METHODS: Acute and chronic arthritis were induced by administering Carrageenan and CFA to the intraplantar surface of the mouse paw. Edema, mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia were assessed in the paw. Similarly, histological and immunohistological parameters were assessed following arthritis induced by CFA. Antioxidants, inflammatory cytokines, and oxidative stress markers were also studied in all the treated groups. RESULTS: The ECN treatment significantly attenuated edema in the paw and elevated the nocifensive threshold following induction of this inflammatory model. Furthermore, ECN treatment markedly improved the arthritis index and distress symptoms, while attenuating the CFA-induced edema in the paw. ECN treatment also improved the histological parameters in the paw tissue compared to the control. At the same time, there was a significant reduction in edema and erosion in the ECN-treated group, as measured by radiographic analysis. Using the Comet's assay, we showed that ECN treatment protected the DNA from chronic CFA-induced arthritis. Immunohistochemistry analysis showed a marked decrease in the expression level of p-JNK (phosphorylated C-Jun N-terminal kinase), NF-κB (Nuclear factor-kappa B), COX-2 (Cyclooxygenase-2), and TNF-α (Tumour necrosis factor-alpha) compared to the CFA-treated group. Biophysical analysis involving molecular docking, molecular dynamics simulations, and binding free energies of ECN were performed to explore the underlying mechanism. CONCLUSION: ECN exhibited significant anti-inflammatory and anti-arthritic activity against Carrageenan and CFA-induced models.


Assuntos
Artrite , NF-kappa B , Animais , Camundongos , Carragenina , Ciclo-Oxigenase 2 , Edema/induzido quimicamente , Edema/tratamento farmacológico , Adjuvante de Freund , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa
16.
Biomed Pharmacother ; 150: 113073, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658216

RESUMO

Alzheimer's disease (AD) is a well-known type of age-related dementia. The present study was conducted to investigate the effect of xanthoangelol against memory deficit and neurodegeneration associated with AD. Preliminarily, xanthoangelol produced neuroprotective effect against H2O2-induced HT-22 cells. Furthermore, effect of xanthoangelol against scopolamine-induced amnesia in mice was determined by intraperitoneally (i.p.) administering xanthoangelol (1, 10 and 20 mg/kg), 30 min prior to induction. Mice were administered scopolamine at a concentration of 1 mg/kg; i.p. for the induction of amnesia associated with AD. Xanthoangelol dose dependently reduced the symptoms of Alzheimer's disease as observed by the results obtained from the behavioral analysis performed using Morris water maze and Y-maze test. The immunohistochemical analysis suggested that xanthoangelol significantly improved Keap-1/Nrf-2 signaling pathway. It greatly reduced the effects of oxidative stress and showed improvement in the anti-oxidant enzyme such as GSH, GST, SOD and catalase. Additionally, xanthoangelol decreased the expression of transient receptor potential vanilloid 1 (TRPV-1), a nonselective cation channel, involved in synaptic plasticity and memory. It activated the anti-oxidants and attenuated the apoptotic (Bax/Bcl-2) pathway. Xanthoangelol also significantly attenuated the scopolamine-induced neuroinflammation by the inhibition of interleukin-1 beta (IL-1ß), and tumor necrosis factor-α (TNF-α) levels. The histological analysis, showed a significant reduction in amyloid plaques by xanthoangelol. Therefore, the present study indicated that xanthoangelol has the ability to ameliorate the AD symptoms by attenuating neuroinflammation and neurodegeneration induced by scopolamine.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Doença de Alzheimer/tratamento farmacológico , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/metabolismo , Animais , Antioxidantes/farmacologia , Chalcona/análogos & derivados , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Peróxido de Hidrogênio/metabolismo , Aprendizagem em Labirinto , Camundongos , Estresse Oxidativo , Escopolamina/farmacologia , Canais de Cátion TRPV/metabolismo
17.
Artif Cells Nanomed Biotechnol ; 50(1): 130-146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35620802

RESUMO

We investigated the effect of green tea extract PEGylated gold nanoparticles (P-AuNPs) making use of its targeted and sustained drug delivery against cyclophosphamide (CYP)-induced cystitis. AuNPs were synthesized by reduction reaction of gold salts with green tea extract following the concept of green synthesis. Mostly spherical-shaped P-AuNPs were synthesized with an average size of 14.3 ± 3.3 nm. Pre-treatment with P-AuNPs (1, 10 mg/kg, i.p.) before CYP (150 mg/kg, i.p.) challenge suggested its uroprotective properties. P-AuNPs significantly reversed all pain-like behaviours and toxicities produced by CYP resulting in a decreased aspartate aminotransferase, alanine aminotransferase, C-reactive protein, and creatinine level. P-AuNPs increased anti-oxidant system by increasing the level of reduced glutathione, glutathione-S-transferase, catalase and superoxide dismutase, and reduced nitric oxide production in bladder tissue. Additionally, it attenuated hypokalaemia and hyponatremia, along with a decrease in Evans blue content in bladder tissue and peritoneal cavity. CYP-induced bladder tissue damage observed by macroscopic and histological findings were remarkably attenuated by P-AuNPs, along with reduced fibrosis of collagen fibre in bladder smooth muscles shown by Masson's trichrome staining. Additionally, alterations in hematological parameters and clinical scoring were also prevented by P-AuNPs suggesting its uroprotective effect.


Assuntos
Cistite , Nanopartículas Metálicas , Antioxidantes , Ciclofosfamida/efeitos adversos , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Ouro/farmacologia , Química Verde/métodos , Humanos , Extratos Vegetais , Polietilenoglicóis , Chá
18.
Int Immunopharmacol ; 109: 108860, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35598479

RESUMO

The present study was designed to investigate the underlying molecular signaling of Coagulansin-A (Coag-A) as a therapeutic agent against Alzheimer's disease (AD). Preliminarily, it exhibited a neuroprotective effect against H2O2-induced oxidative stress in HT-22 cells. The in vivo studies were performed by administering Coag-A (0.1, 1, and 10 mg/kg) intraperitoneally to 5xFAD transgenic (Tg) mouse model. Coag-A (10 mg/kg) significantly attenuated the cognitive decline compared to Tg mice group in the shallow water maze (SWM) and Y-maze test paradigms. The anti-aggregation potential of Coag-A was determined by performing Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimeter (DSC) analysis in the prefrontal cortex (PFC) and hippocampal (HC) regions of mice brain. The FT-IR spectra demonstrated the inhibition of amyloid beta (Aß) through a decrease in ß-sheet aggregation, along with the inhibition of changes in the lipids, proteins, and phospholipids. The DSC analysis displayed a low-temperature exotherm associated with the reversible process of aggregation of soluble protein fractions prior to denaturation. Furthermore, Coag-A treatment displayed a regular density of granule cells in H&E stained sections, along with a reduced amyloid load and PAS-positive granules in all the regions of interest in mice brain. The real-time polymerase chain reaction (q-PCR), western blot and immunohistochemical (IHC) analysis demonstrated antioxidant, anti-inflammatory, and anti-apoptotic effect of Coag-A by enhancing the expression of nuclear factor erythroid-2-related factor (Nrf-2) and reducing nuclear factor kappa B (NF-κB) and Bax protein expression. In addition, Coag-A significantly increased the antioxidant enzymes and proteins level, along with a reduced pro-inflammatory cytokines production.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Peróxido de Hidrogênio , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Memória Espacial , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Naunyn Schmiedebergs Arch Pharmacol ; 395(6): 717-733, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348816

RESUMO

Multiple sclerosis (MS) is an immune-mediated chronic inflammatory demyelinating disease of the central nervous system (CNS). The aim of the current study was to investigate the effects of magnolol in an experimental autoimmune encephalomyelitis (EAE) model of MS in female mice. Magnolol (0.1, 1, and 10 mg/kg) was administered once daily for 21 days after immunization of mice. Magnolol post-immunization treatment significantly reversed clinical scoring, EAE-associated pain parameters, and motor dysfunction in a dose-dependent manner. Magnolol treatment significantly inhibited oxidative stress by reducing malondialdehyde (MDA), nitric oxide (NO) production, and myeloperoxidase (MPO) activity while enhancing the level of antioxidants such as reduced glutathione (GSH), glutathione-S-transferase (GST), catalase, and superoxide dismutase (SOD) in the brain and spinal cord. It reduced cytokine levels in the brain and spinal cord. It suppressed CD8+ T cells frequency in the spleen tissue. Magnolol remarkably reversed the EAE-associated histopathology of the brain and spinal cord tissue. Magnolol significantly intensifies the antioxidant defense system by enhancing the expression level of nuclear factor erythroid 2-related factor (Nrf2) while decreasing the expression of inducible nitric oxide synthase (iNOS) and cleaved-caspase-3 in the brain. Molecular docking results showed that magnolol possesses a better binding affinity for Nrf2, iNOS, and caspase-3 proteins. Taken together, the present study demonstrated that magnolol has significant neuroprotective properties in EAE via inhibition of oxidative stress.


Assuntos
Lesões Encefálicas , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Compostos de Bifenilo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Lignanas , Camundongos , Simulação de Acoplamento Molecular , Esclerose Múltipla/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
20.
Fundam Clin Pharmacol ; 36(5): 879-897, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35259284

RESUMO

The present study investigated the effect of the N-(benzylidene)-2-((2-hydroxynaphthalen-1-yl)diazenyl)benzohydrazides (1-2) (NCHDH and NTHDH) against breast cancer using in vitro and in vivo approaches. The NCHDH and NTHDH significantly inhibited the growth of the MCF-7 cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The NCHDH and NTHDH treatment significantly inhibited the tumor size, tumor weight, and tumor volume, while it enhanced the survival and tumor free survival rate following 7,12-Dimethylbenz[a]anthracene (DMBA)-induced breast cancer. The NCHDH and NTHDH markedly attenuated the oxidative stress markers and induced the antioxidant level. The enzyme-linked immunosorbent assay (ELISA) showed significant reduction in the inflammatory cytokines production compared with the DMBA control. The NCHDH and NTHDH treatment significantly improved the histological features using hematoxylin and eosin (H and E) staining, Masson's trichrome, PAS (periodic acid Schiff), and Toluidine blue staining compared with the DMBA-induced group. The NCHDH and NTHDH treatment improved the hematological and serological parameters following DMBA-induced breast tumor compared with DMBA-induced group. Furthermore, the NCHDH and NTHDH treatment significantly enhanced the antioxidants signaling proteins such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme oxygenase 1 (HO-1). The NCHDH and NTHDH enhanced the inhibitor of NF-κB (IκB) level, while it attenuated the NF-κB level. Similarly, the NCHDH and NTHDH showed marked increase in the apoptosis proteins such as Caspase-3, Caspase-9, and Bcl-2 Associated X-protein (Bax), while it inhibited the B-cell lymphoma 2 (Bcl-2) expression. In conclusion, the NCHDH and NTHDH significantly improved the DMBA-induced breast cancer via attenuating oxidative stress and inflammatory cytokines.


Assuntos
Neoplasias da Mama , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Apoptose , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Citocinas/metabolismo , Feminino , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...