Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Bioallied Sci ; 15(3): 107-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705853

RESUMO

Background/Objective/Methods: Capsaicin micelles were prepared by the direct dissolution using the amphiphilic copolymer Pluronic P123 and advanced for substantially novel submicro-nanocytotoxicity. Results: Superior cytotoxicity of capsaicin loaded nanomicelles vs. both the raw capsaicin and reference cisplatin in pancreatic PANC1, breast MCF7, colorectal resistant CACO2, skin A375, lung A549 and prostate PC3 cancer cell lines were delineated. Nicotinic acid (NA) derivative 39 (2-Amino IsoNA) had antiinflammatory potential but consistently lacked antiproliferation in MCF7, PANC1 and CACO2. Besides NA derivatives 8 (5-MethylNA) and 44 (6-AminoNA) exhibited lack of antiinflammation but had comparable antitumorigenesis potency to cisplatin in PANC1 cells. Though capsaicin loaded nanomicelles exerted pronounced antiinflammation (with IC50 value of 510 nM vs. Indomethacin's) in lipopolysacchride-induced inflammation of RAW247.6 macrophages; they lacked DPPH scavenging propensities. Free capsaicin proved more efficacious vs. its loaded nanocarriers to chemosensitize cytotoxicity of combinations with NAs 1(6-Hexyloxy Nicotinic Acid), 5(6-OctyloxyNA), 8(5-MethylNA), 12(6-Thien-2yl-NA), 13(5,6-DichloroNA) and 44(6-AminoNA) in CACO2, PANC1 and prostate PC3. Conclusion: Capsaicin loaded nanomicelles proved more efficacious vs. free capsaicin to chemo-sensitize antiproliferation of cotreatments with NA derivatives, 1, 5, 8, 12, 13 and 44 (in skin A375), 1, 5, 8 and 12 (in breast MCF7), and 1, 5, 12 and 44 (in lung A549).

2.
Asian Pac J Cancer Prev ; 24(3): 977-989, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36974553

RESUMO

BACKGROUND: The study aimed to examine rutin micelles of advanced superlative dual cytotoxicity-antiinflammtion bioefficacies in substantially novel submicro-nanoaffinities vs. both the raw rutin and reference proapoptotic cisplatin. METHODOLOGY: Antiproliferative capabilities of rutin, benzoic acid (BA) and triazolofluoroqunolone (TFQ) derivatives were reported; hence chemosensitizing effects of rutin or its polymeric micelles (of improved solubility and bioavailability via direct dissolution using the amphiphilic copolymer Pluronic P123) in co-incubations with 5 BAs or 3 TFQ derivatives in a panel of 6 cancer cell lines were verified. RESULTS: Rutin loading in micelles was achieved with a loading efficiency of 59.5 ± 2.9%. The particle size of the micelles was found to be 18 ± 2 nm. Though Rutin loaded nanomicelles were of minimal DPPH radical scavenging activity; they had nitrogen oxide (NO) radical scavenging activity in lipopolysaccharide-induced RAW264.7 macrophages with equipotency to indomethacin (IC50 values (µM) 73.03 vs. 60.88; p=0.057). Remarkably nano-micelle formulation of rutin was proved of significantly more potent antineoplastic bioactivity with submicro-nanomolar affinities in the 6 cancer cell lines vs. both free rutin's and cisplatin's (except A549 lung cancer cell line). Rrutin nanomicelles chemo-sensitized all selected 8 cotreatments with BA derivatives and TFQs and, thus reducing the dose used against breast cancer MCF7 cells to submicro-nanomolar affinities of greater potencies than cisplatin's. Except for Triazolo-4-anisidine cipro butyl acid in PANC1, 2-Amino-3,5-Di iodo BA in A375 and 4-Nitrophenol in A549 incubations; rutin loaded nanomicelles chemosensitized 7/8 cotreating selected benzoic acid (BAs) derivatives and TFQs and chemosensitized pancreatic PANC1, skin A375 and lung A549 cancer cell lines, thus reducing the dose to submicro-nanomolar affinities of greater potencies than cisplatin's. Rutin loaded nanomicelles chemosensitize 6/8 cotreating selected benzoic acid (BA) derivatives and TFQs (except for 2-Amino-5-Bromo Benzoic Acid and Triazolo-4-anisidine cipro butyl acid), thus reducing the dose used against resistant CACO2 colorectal cancer cells.


Assuntos
Antineoplásicos , Micelas , Humanos , Células CACO-2 , Portadores de Fármacos/química , Rutina/farmacologia , Benzoatos , Cisplatino , Nanomedicina , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Polímeros/química , Ácido Benzoico , Ciprofloxacina , Tamanho da Partícula
3.
Anticancer Agents Med Chem ; 22(8): 1611-1621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515014

RESUMO

BACKGROUND: Chronic inflammation plays a crucial role in the initiation, promotion, and invasion of tumors, and thus the antiproliferative effects of numerous anti-inflammatory drugs have been frequently reported in the literature. Upregulation of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) has been linked to various human cancers, including breast cancer. OBJECTIVES: This research aims to investigate the antiproliferative activity of different Non-steroidal anti-inflammatory drugs (NSAIDs), including COX-2 selective and non-selective agents, against various breast cancer cell lines and to elucidate possible molecular pathways involved in their activity. METHODS: The antiproliferative and combined effects of NSAIDs with raloxifene were evaluated by MTT assay. Cell migration was assessed using a wound-healing assay. The mechanism of cell death was determined using the Annexin V-FITC/ propidium iodide staining flow cytometry method. A mass spectrometry-based targeted metabolomics approach was used to profile the metabolomic changes induced in the T47d cells upon drug treatment. RESULTS: Our results have demonstrated that celecoxib, a potent and selective COX-2 inhibitor, resulted in significant antiproliferative activity against all examined breast cancer cell lines with IC50 values of 95.44, 49.50. and 97.70 µM against MDA-MB-231, T47d, and MCF-7, respectively. Additionally, celecoxib exhibited a synergistic effect against T47d cells combined with raloxifene, a selective estrogen receptor modulator. Interestingly, celecoxib treatment increased cell apoptosis and resulted in substantial inhibition of cancer cell migration. In addition, the metabolomic analysis suggests that celecoxib may have affected metabolites (n = 43) that are involved in several pathways, including the tricarboxylic acid cycle, amino acids metabolism pathways, and energy production pathways in cancer cells. CONCLUSION: Celecoxib may possess potential therapeutic utility for breast cancer treatment as monotherapy or in combination therapy. The reported metabolic changes taking place upon celecoxib treatment may shed light on possible molecular targets mediating the antiproliferative activity of celecoxib in an independent manner of its COX-2 inhibition.


Assuntos
Neoplasias da Mama , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Neoplasias da Mama/patologia , Celecoxib/farmacologia , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Humanos , Metabolômica , Cloridrato de Raloxifeno/uso terapêutico
4.
Pharmaceutics ; 12(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867015

RESUMO

Thymoquinone (TQ) is a water-insoluble natural compound isolated from Nigella sativa that has demonstrated promising chemotherapeutic activity. The purpose of this study was to develop a polymeric nanoscale formulation for TQ to circumvent its delivery challenges. TQ-encapsulated nanoparticles (NPs) were fabricated using methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) copolymers by the nanoprecipitation technique. Formulation variables included PCL chain length and NP architecture (matrix-type nanospheres or reservoir-type nanocapsules). The formulations were characterized in terms of their particle size, polydispersity index (PDI), drug loading efficiency, and drug release. An optimized TQ NP formulation in the form of oil-filled nanocapsules (F2-NC) was obtained with a mean hydrodynamic diameter of 117 nm, PDI of 0.16, about 60% loading efficiency, and sustained in vitro drug release. The formulation was then tested in cultured human cancer cell lines to verify its antiproliferative efficacy as a potential anticancer nanomedicine. A pilot pharmacokinetic study was also carried out in healthy mice to evaluate the oral bioavailability of the optimized formulation, which revealed a significant increase in the maximum plasma concentration (Cmax) and a 1.3-fold increase in bioavailability compared to free TQ. Our findings demonstrate that the versatility of polymeric NPs can be effectively applied to design a nanoscale delivery platform for TQ that can overcome its biopharmaceutical limitations.

5.
JMIR Public Health Surveill ; 6(1): e18503, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32217506

RESUMO

The World Health Organization (WHO) declared the current COVID-19 a public health emergency of international concern on January 30, 2020. Countries in the Eastern Mediterranean Region (EMR) have a high vulnerability and variable capacity to respond to outbreaks. Many of these countries addressed the need for increasing capacity in the areas of surveillance and rapid response to public health threats. Moreover, countries addressed the need for communication strategies that direct the public to actions for self- and community protection. This viewpoint article aims to highlight the contribution of the Global Health Development (GHD)/Eastern Mediterranean Public Health Network (EMPHNET) and the EMR's Field Epidemiology Training Program (FETPs) to prepare for and respond to the current COVID-19 threat. GHD/EMPHNET has the scientific expertise to contribute to elevating the level of country alert and preparedness in the EMR and to provide technical support through health promotion, training and training materials, guidelines, coordination, and communication. The FETPs are currently actively participating in surveillance and screening at the ports of entry, development of communication materials and guidelines, and sharing information to health professionals and the public. However, some countries remain ill-equipped, have poor diagnostic capacity, and are in need of further capacity development in response to public health threats. It is essential that GHD/EMPHNET and FETPs continue building the capacity to respond to COVID-19 and intensify support for preparedness and response to public health emergencies.


Assuntos
Fortalecimento Institucional , Comportamento Cooperativo , Infecções por Coronavirus , Surtos de Doenças/prevenção & controle , Epidemiologia/educação , Saúde Global , Pandemias , Pneumonia Viral , Vigilância em Saúde Pública/métodos , Saúde Pública/educação , Rede Social , Betacoronavirus , COVID-19 , Defesa Civil , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Epidemiologia/normas , Promoção da Saúde , Humanos , Região do Mediterrâneo , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Saúde Pública/normas , Prática de Saúde Pública , SARS-CoV-2 , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...