Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(43): 15324-15328, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31449707

RESUMO

Vibrational strong coupling (VSC) has recently emerged as a completely new tool for influencing chemical reactivity. It harnesses electromagnetic vacuum fluctuations through the creation of hybrid states of light and matter, called polaritonic states, in an optical cavity resonant to a molecular absorption band. Here, we investigate the effect of vibrational strong coupling of water on the enzymatic activity of pepsin, where a water molecule is directly involved in the enzyme's chemical mechanism. We observe an approximately 4.5-fold decrease of the apparent second-order rate constant kcat /Km when coupling the water stretching vibration, whereas no effect was detected for the strong coupling of the bending vibration. The possibility of modifying enzymatic activity by coupling water demonstrates the potential of VSC as a new tool to study biochemical reactivity.

2.
Phys Rev Lett ; 117(15): 153601, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768350

RESUMO

From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

3.
J Phys Chem Lett ; 7(20): 4159-4164, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27689759

RESUMO

In quantum electrodynamics, matter can be hybridized to confined optical fields by a process known as light-matter strong coupling. This gives rise to new hybrid light-matter states and energy levels in the coupled material, leading to modified physical and chemical properties. Here, we report for the first time the strong coupling of vibrational modes of proteins with the vacuum field of a Fabry-Perot mid-infrared cavity. For two model systems, poly(l-glutamic acid) and bovine serum albumin, strong coupling is confirmed by the anticrossing in the dispersion curve, the square root dependence on the concentration, and a vacuum Rabi splitting that is larger than the cavity and vibration line widths. These results demonstrate that strong coupling can be applied to the study of proteins with many possible applications including the elucidation of the role of vibrational dynamics in enzyme catalysis and in H/D exchange experiments.

4.
Angew Chem Int Ed Engl ; 55(38): 11462-6, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27529831

RESUMO

The ground-state deprotection of a simple alkynylsilane is studied under vibrational strong coupling to the zero-point fluctuations, or vacuum electromagnetic field, of a resonant IR microfluidic cavity. The reaction rate decreased by a factor of up to 5.5 when the Si-C vibrational stretching modes of the reactant were strongly coupled. The relative change in the reaction rate under strong coupling depends on the Rabi splitting energy. Product analysis by GC-MS confirmed the kinetic results. Temperature dependence shows that the activation enthalpy and entropy change significantly, suggesting that the transition state is modified from an associative to a dissociative type. These findings show that vibrational strong coupling provides a powerful approach for modifying and controlling chemical landscapes and for understanding reaction mechanisms.

5.
Nano Lett ; 16(7): 4368-74, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27266674

RESUMO

Room temperature strong coupling of WS2 monolayer exciton transitions to metallic Fabry-Pérot and plasmonic optical cavities is demonstrated. A Rabi splitting of 101 meV is observed for the Fabry-Pérot cavity. The enhanced magnitude and visibility of WS2 monolayer strong coupling is attributed to the larger absorption coefficient, the narrower line width of the A exciton transition, and greater spin-orbit coupling. For WS2 coupled to plasmonic arrays, the Rabi splitting still reaches 60 meV despite the less favorable coupling conditions, and displays interesting photoluminescence features. The unambiguous signature of WS2 monolayer strong coupling in easily fabricated metallic resonators at room temperature suggests many possibilities for combining light-matter hybridization with spin and valleytronics.

6.
J Phys Chem Lett ; 6(6): 1027-31, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-26262864

RESUMO

Light-matter strong coupling involving ground-state molecular vibrations is investigated for the first time in the liquid phase for a set of molecules placed in microcavities. By tuning the cavities, one or more vibrational modes can be coupled in parallel or in series, inducing a change in the vibrational frequencies of the bonds. These findings are of fundamental importance to fully develop light-matter strong coupling for applications in molecular and material sciences.

7.
Angew Chem Int Ed Engl ; 54(27): 7971-5, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26037542

RESUMO

Ground-state molecular vibrations can be hybridized through strong coupling with the vacuum field of a cavity optical mode in the infrared region, leading to the formation of two new coherent vibro-polariton states. The spontaneous Raman scattering from such hybridized light-matter states was studied, showing that the collective Rabi splitting occurs at the level of a single selected bond. Moreover, the coherent nature of the vibro-polariton states boosts the Raman scattering cross-section by two to three orders of magnitude, revealing a new enhancement mechanism as a result of vibrational strong coupling. This observation has fundamental consequences for the understanding of light-molecule strong coupling and for molecular science.

8.
Small ; 10(17): 3579-87, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25340189

RESUMO

A biosensor chip is developed for the detection of a protein biomarker of endocrine disrupting compounds, vitellogenin (Vg) in aquatic environment. The sensor chip is fabricated by immobilizing anti-Vg antibody on 4-Aminothiophenol (4-ATP) coated nanosculptured thin films (nSTFs) of silver on Si substrates. The biosensor is based on the SERS of 4-ATP, enhanced by the Ag nSTFs. Before the fabrication of the sensor, the performance of the enhancement is optimized with respect to the porosity of nSTFs. Further, the biosensor is developed on the nSTF with optimized enhancement. The SERS signals are recorded from the sensor chip for varying concentrations of Vg. A control experiment is performed on another similar protein Fetuin to confirm the specificity of the sensor. The repeatability and reusability of the sensor, along with its shelf life are also checked. The limit of detection of the sensor is found to be 5 pg mL −1 of Vg in PBS within our experimental window. Apart from high sensitivity, specificity and reusability, the present sensor provides additional advantages of miniaturization, requirement of very small volumes of the analyte solution (15 µL) and fast response as compared to conventional techniques e.g., ELISA, as its response time is less than 3 minutes.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos/análise , Membranas Artificiais , Nanopartículas Metálicas/química , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Vitelogeninas/análise , Compostos de Anilina/química , Animais , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Crustáceos , Feminino , Dispositivos Lab-On-A-Chip , Rodamina 123/química , Prata/química , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Compostos de Sulfidrila/química , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA