Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 11(3): 816-865, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38550347

RESUMO

Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurface-related papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this "golden age" of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption.

2.
ACS Photonics ; 10(12): 4079-4103, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145171

RESUMO

Metasurfaces have recently emerged as a promising technological platform, offering unprecedented control over light by structuring materials at the nanoscale using two-dimensional arrays of subwavelength nanoresonators. These metasurfaces possess exceptional optical properties, enabling a wide variety of applications in imaging, sensing, telecommunication, and energy-related fields. One significant advantage of metasurfaces lies in their ability to manipulate the optical spectrum by precisely engineering the geometry and material composition of the nanoresonators' array. Consequently, they hold tremendous potential for efficient solar light harvesting and conversion. In this Review, we delve into the current state-of-the-art in solar energy conversion devices based on metasurfaces. First, we provide an overview of the fundamental processes involved in solar energy conversion, alongside an introduction to the primary classes of metasurfaces, namely, plasmonic and dielectric metasurfaces. Subsequently, we explore the numerical tools used that guide the design of metasurfaces, focusing particularly on inverse design methods that facilitate an optimized optical response. To showcase the practical applications of metasurfaces, we present selected examples across various domains such as photovoltaics, photoelectrochemistry, photocatalysis, solar-thermal and photothermal routes, and radiative cooling. These examples highlight the ways in which metasurfaces can be leveraged to harness solar energy effectively. By tailoring the optical properties of metasurfaces, significant advancements can be expected in solar energy harvesting technologies, offering new practical solutions to support an emerging sustainable society.

4.
Nat Commun ; 14(1): 5877, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735167

RESUMO

All-optical switches control the amplitude, phase, and polarization of light using optical control pulses. They can operate at ultrafast timescales - essential for technology-driven applications like optical computing, and fundamental studies like time-reflection. Conventional all-optical switches have a fixed switching time, but this work demonstrates that the response-time can be controlled by selectively controlling the light-matter-interaction in so-called fast and slow materials. The bi-material switch has a nanosecond response when the probe interacts strongly with titanium nitride near its epsilon-near-zero (ENZ) wavelength. The response-time speeds up over two orders of magnitude with increasing probe-wavelength, as light's interaction with the faster Aluminum-doped zinc oxide (AZO) increases, eventually reaching the picosecond-scale near AZO's ENZ-regime. This scheme provides several additional degrees of freedom for switching time control, such as probe-polarization and incident angle, and the pump-wavelength. This approach could lead to new functionalities within key applications in multiband transmission, optical computing, and nonlinear optics.

5.
Nat Commun ; 14(1): 4828, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563106

RESUMO

One of the main characteristics of optical imaging systems is spatial resolution, which is restricted by the diffraction limit to approximately half the wavelength of the incident light. Along with the recently developed classical super-resolution techniques, which aim at breaking the diffraction limit in classical systems, there is a class of quantum super-resolution techniques which leverage the non-classical nature of the optical signals radiated by quantum emitters, the so-called antibunching super-resolution microscopy. This approach can ensure a factor of [Formula: see text] improvement in the spatial resolution by measuring the n -th order autocorrelation function. The main bottleneck of the antibunching super-resolution microscopy is the time-consuming acquisition of multi-photon event histograms. We present a machine learning-assisted approach for the realization of rapid antibunching super-resolution imaging and demonstrate 12 times speed-up compared to conventional, fitting-based autocorrelation measurements. The developed framework paves the way to the practical realization of scalable quantum super-resolution imaging devices that can be compatible with various types of quantum emitters.

6.
Opt Express ; 31(6): 9165-9170, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157491

RESUMO

Photonic Time-Crystals (PTCs) are materials in which the refractive index varies periodically and abruptly in time. This medium exhibits unusual properties such as momentum bands separated by gaps within which waves can be amplified exponentially, extracting energy from the modulation. This article provides a brief review on the concepts underlying PTCs, formulates the vision and discusses the challenges.

7.
Opt Express ; 31(5): 8267-8273, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859942

RESUMO

Recent advances in ultrafast, large-modulation photonic materials have opened the door to many new areas of research. One specific example is the exciting prospect of photonic time crystals. In this perspective, we outline the most recent material advances that are promising candidates for photonic time crystals. We discuss their merit in terms of modulation speed and depth. We also investigate the challenges yet to be faced and provide our estimation on possible roads to success.

8.
Nano Lett ; 23(1): 25-33, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36383034

RESUMO

The negatively charged boron vacancy (VB-) defect in hexagonal boron nitride (hBN) with optically addressable spin states has emerged due to its potential use in quantum sensing. Remarkably, VB- preserves its spin coherence when it is implanted at nanometer-scale distances from the hBN surface, potentially enabling ultrathin quantum sensors. However, its low quantum efficiency hinders its practical applications. Studies have reported improving the overall quantum efficiency of VB- defects with plasmonics; however, the overall enhancements of up to 17 times reported to date are relatively modest. Here, we demonstrate much higher emission enhancements of VB- with low-loss nanopatch antennas (NPAs). An overall intensity enhancement of up to 250 times is observed, corresponding to an actual emission enhancement of ∼1685 times by the NPA, along with preserved optically detected magnetic resonance contrast. Our results establish NPA-coupled VB- defects as high-resolution magnetic field sensors and provide a promising approach to obtaining single VB- defects.

9.
Adv Mater ; 35(34): e2109546, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35917390

RESUMO

The unique properties of the emerging photonic materials, conducting nitrides and oxides, especially their tailorability, large damage thresholds, and, importantly, the so-called epsilon-near-zero (ENZ) behavior, have enabled novel photonic phenomena spanning optical circuitry, tunable metasurfaces, and nonlinear optical devices. This work explores direct control of the optical properties of polycrystalline titanium nitride (TiN) and aluminum-doped zinc oxide (AZO) by tailoring the film thickness, and their potential for ENZ-enhanced photonic applications. This study demonstrates that TiN-AZO bilayers support Ferrell-Berreman modes using the thickness-dependent ENZ resonances in the AZO films operating in the telecom wavelengths spanning from 1470 to 1750 nm. The bilayer stacks also act as strong light absorbers in the ultraviolet regime using the radiative ENZ modes and the Fabry-Perot modes in the constituent TiN films. The studied Berreman resonators exhibit optically induced reflectance modulation of 15% with picosecond response time. Together with the optical response tailorability of conducting oxides and nitrides, using the field enhancement near the tunable ENZ regime can enable a wide range of nonlinear optical phenomena, including all-optical switching, time refraction, and high-harmonic generation.

10.
Nat Commun ; 13(1): 3536, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725983

RESUMO

Transparent conducting oxides exhibit giant optical nonlinearities in the near-infrared window where their linear index approaches zero. Despite the magnitude and speed of these nonlinearities, a "killer" optical application for these compounds has yet to be found. Because of the absorptive nature of the typically used intraband transitions, out-of-plane configurations with short optical paths should be considered. In this direction, we propose an alternative frequency-resolved optical gating scheme for the characterization of ultra-fast optical pulses that exploits near-zero-index aluminium zinc oxide thin films. Besides the technological advantages in terms of manufacturability and cost, our system outperforms commercial modules in key metrics, such as operational bandwidth, sensitivity, and robustness. The performance enhancement comes with the additional benefit of simultaneous self-phase-matched second and third harmonic generation. Because of the fundamental importance of novel methodologies to characterise ultra-fast events, our solution could be of fundamental use for numerous research labs and industries.

11.
Nano Lett ; 22(12): 4622-4629, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35640070

RESUMO

Plasmonic transdimensional materials (TDMs), which are atomically thin metals of precisely controlled thickness, are expected to exhibit large tailorability and dynamic tunability of their optical response as well as strong light confinement and nonlocal effects. Using spectroscopic ellipsometry, we characterize the complex permittivity of ultrathin films of passivated plasmonic titanium nitride with thicknesses ranging from 1 to 10 nm. By measuring passivated TiN, we experimentally distinguish between the contributions of an oxide layer and thickness to the optical properties. A decrease in the Drude plasma frequency and increase in the damping in thinner films is observed due to spatial confinement. We explain the experimental trends using a nonlocal Drude dielectric response theory based on the Keldysh-Rytova (KR) potential that predicts the thickness-dependent optical properties caused by electron confinement in plasmonic TDMs. Our experimental findings are consistent with the KR model and demonstrate quantum-confinement-induced optical properties in plasmonic transdimensional TiN.

12.
Sci Adv ; 7(50): eabj0627, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890236

RESUMO

Single-photon emitters are essential in enabling several emerging applications in quantum information technology, quantum sensing, and quantum communication. Scalable photonic platforms capable of hosting intrinsic or embedded sources of single-photon emission are of particular interest for the realization of integrated quantum photonic circuits. Here, we report on the observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates. Photophysical analysis reveals bright (>105 counts/s), stable, linearly polarized, and pure quantum emitters in SiN films with a second-order autocorrelation function value at zero time delay g(2)(0) below 0.2 at room temperature. We suggest that the emission originates from a specific defect center in SiN because of the narrow wavelength distribution of the observed luminescence peak. Single-photon emitters in SiN have the potential to enable direct, scalable, and low-loss integration of quantum light sources with a well-established photonic on-chip platform.

13.
Opt Lett ; 46(21): 5433-5436, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724494

RESUMO

Optical nonlinearities can be strongly enhanced by operating in the so-called near-zero-index (NZI) regime, where the real part of the refractive index of the system under investigation approaches zero. Here we experimentally demonstrate semi-degenerate four-wave mixing (FWM) in aluminum zinc oxide thin films generating radiation tunable in the visible spectral region, where the material is highly transparent. To this end, we employed an intense pump (787 nm) and a seed tunable in the NIR window (1100-1500 nm) to generate a visible idler wave (530-620 nm). Experiments show enhancement of the frequency conversion efficiency with a maximum of 2% and a signal-to-pump detuning of 360 nm. Effective idler wavelength tuning has also been demonstrated by operating on the temporal delay between the pump and signal.

14.
Nano Lett ; 21(19): 8182-8189, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606291

RESUMO

Two-dimensional hexagonal boron nitride (hBN) that hosts room-temperature single-photon emitters (SPEs) is promising for quantum information applications. An important step toward the practical application of hBN is the on-demand, position-controlled generation of SPEs. Strategies reported for deterministic creation of hBN SPEs either rely on substrate nanopatterning that is not compatible with integrated photonics or utilize radiation sources that might introduce unpredictable damage or contamination to hBN. Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with atomic force microscopy (AFM). The method applies to hBN flakes on flat silicon dioxide-silicon substrates that can be readily integrated into on-chip photonic devices. The achieved SPE yields are above 30% for multiple indent sizes, and a maximum yield of 36% is demonstrated for indents around 400 nm. Our results mark an important step toward the deterministic creation and integration of hBN SPEs with photonic and plasmonic devices.


Assuntos
Compostos de Boro , Dióxido de Silício
15.
Nat Commun ; 12(1): 5560, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548490

RESUMO

Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650-1000 nm with an average efficiency of 77.1%-88.5% and a numerical aperture of 0.24-0.1. This research paves a solid step towards practical applications of flat photonics.


Assuntos
Raios Infravermelhos , Lentes , Imagem Óptica/instrumentação , Titânio/química , Desenho de Equipamento , Nanoestruturas/química , Óptica e Fotônica , Propriedades de Superfície
16.
Light Sci Appl ; 9: 126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704359

RESUMO

The recently proposed concept of graphene photodetectors offers remarkable properties such as unprecedented compactness, ultrabroadband detection, and an ultrafast response speed. However, owing to the low optical absorption of pristine monolayer graphene, the intrinsically low responsivity of graphene photodetectors significantly hinders the development of practical devices. To address this issue, numerous efforts have thus far been made to enhance the light-graphene interaction using plasmonic structures. These approaches, however, can be significantly advanced by leveraging the other critical aspect of graphene photoresponsivity enhancement-electrical junction control. It has been reported that the dominant photocarrier generation mechanism in graphene is the photothermoelectric (PTE) effect. Thus, the two energy conversion mechanisms involved in the graphene photodetection process are light-to-heat and heat-to-electricity conversions. In this work, we propose a meticulously designed device architecture to simultaneously enhance the two conversion efficiencies. Specifically, a gap plasmon structure is used to absorb a major portion of the incident light to induce localized heating, and a pair of split gates is used to produce a p-n junction in graphene to augment the PTE current generation. The gap plasmon structure and the split gates are designed to share common key components so that the proposed device architecture concurrently realizes both optical and electrical enhancements. We experimentally demonstrate the dominance of the PTE effect in graphene photocurrent generation and observe a 25-fold increase in the generated photocurrent compared to the un-enhanced cases. While further photocurrent enhancement can be achieved by applying a DC bias, the proposed device concept shows vast potential for practical applications.

17.
Light Sci Appl ; 9: 90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509297

RESUMO

Ten years ago, three teams experimentally demonstrated the first spasers, or plasmonic nanolasers, after the spaser concept was first proposed theoretically in 2003. An overview of the significant progress achieved over the last 10 years is presented here, together with the original context of and motivations for this research. After a general introduction, we first summarize the fundamental properties of spasers and discuss the major motivations that led to the first demonstrations of spasers and nanolasers. This is followed by an overview of crucial technological progress, including lasing threshold reduction, dynamic modulation, room-temperature operation, electrical injection, the control and improvement of spasers, the array operation of spasers, and selected applications of single-particle spasers. Research prospects are presented in relation to several directions of development, including further miniaturization, the relationship with Bose-Einstein condensation, novel spaser-based interconnects, and other features of spasers and plasmonic lasers that have yet to be realized or challenges that are still to be overcome.

18.
Science ; 369(6502): 423-426, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32499398

RESUMO

Hot carriers in plasmonic nanostructures, generated via plasmon decay, play key roles in applications such as photocatalysis and in photodetectors that circumvent bandgap limitations. However, direct experimental quantification of steady-state energy distributions of hot carriers in nanostructures has so far been lacking. We present transport measurements from single-molecule junctions, created by trapping suitably chosen single molecules between an ultrathin gold film supporting surface plasmon polaritons and a scanning probe tip, that can provide quantification of plasmonic hot-carrier distributions. Our results show that Landau damping is the dominant physical mechanism of hot-carrier generation in nanoscale systems with strong confinement. The technique developed in this work will enable quantification of plasmonic hot-carrier distributions in nanophotonic and plasmonic devices.

19.
Nano Lett ; 20(5): 3663-3672, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320257

RESUMO

Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300-600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic "nanofurnaces" capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10-21 L) volumetric precision, catalyzing C-C bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h-1 m-2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.

20.
Micromachines (Basel) ; 11(1)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968578

RESUMO

Interferometric effects between two counter-propagating beams incident on an optical system can lead to a coherent modulation of the absorption of the total electromagnetic radiation with 100% efficiency even in deeply subwavelength structures. Coherent perfect absorption (CPA) rises from a resonant solution of the scattering matrix and often requires engineered optical properties. For instance, thin film CPA benefits from complex nanostructures with suitable resonance, albeit at a loss of operational bandwidth. In this work, we theoretically and experimentally demonstrate a broadband CPA based on light-with-light modulation in epsilon-near-zero (ENZ) subwavelength films. We show that unpatterned ENZ films with different thicknesses exhibit broadband CPA with a near-unity maximum value located at the ENZ wavelength. By using Kerr optical nonlinearities, we dynamically tune the visibility and peak wavelength of the total energy modulation. Our results based on homogeneous thick ENZ media open a route towards on-chip devices that require efficient light absorption and dynamical tunability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...