Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4689, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542069

RESUMO

We study the Mie-like scattering from an open subwavelength resonator made of a high-index dielectric material, when its parameters are tuned to the regime of interfering resonances. We uncover a novel mechanism of superscattering, closely linked to strong coupling of the resonant modes and described by the physics of bound states in the continuum (BICs). We demonstrate that the enhanced scattering occurs due to constructive interference described by the Friedrich-Wintgen mechanism of interfering resonances, allowing to push the scattering cross section of a multipole resonance beyond the currently established limit. We develop a general non-Hermitian model to describe interfering resonances of the quasi-normal modes, and study subwavelength dielectric nonspherical resonators exhibiting avoided crossing resonances associated with quasi-BIC states. We confirm our theoretical findings by a scattering experiment conducted in the microwave frequency range. Our results reveal a new strategy to boost scattering from non-Hermitian systems, suggesting important implications for metadevices.

2.
Opt Express ; 31(12): 19646-19656, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381375

RESUMO

Plasmonic nanoparticles can be employed as a promising integrated platform for lumped optical nanoelements with unprecedentedly high integration capacity and efficient nanoscale ultrafast nonlinear functionality. Further minimizing the size of plasmonic nanoelements will lead to a rich variety of nonlocal optical effects due to the nonlocal nature of electrons in plasmonic materials. In this work, we theoretically investigate the nonlinear chaotic dynamics of the plasmonic core-shell nanoparticle dimer consisting of a nonlocal plasmonic core and a Kerr-type nonlinear shell at nanometer scale. This kind of optical nanoantennae could provide novel switching functionality: tristable, astable multivibrators, and chaos generator. We give a qualitative analysis on the influence of nonlocality and aspect ratio of core-shell nanoparticles on the chaos regime as well as on the nonlinear dynamical processing. It is demonstrated that considering nonlocality is very important in the design of such nonlinear functional photonic nanoelements with ultra-small size. Compared to solid nanoparticles, core-shell nanoparticles provide an additional freedom to adjust their plasmonic property hence tuning the chaotic dynamic regime in the geometric parameter space. This kind of nanoscale nonlinear system could be the candidate for a nonlinear nanophotonic device with a tunable nonlinear dynamical response.

3.
Sci Rep ; 13(1): 1073, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658207

RESUMO

Adipose tissue (AT) optical properties for physiological temperatures and in vivo conditions are still insufficiently studied. The AT is composed mainly of packed cells close to spherical shape. It is a possible reason that AT demonstrates a very complicated spatial structure of reflected or transmitted light. It was shown with a cellular tissue phantom, is split into a fan of narrow tracks, originating from the insertion point and representing filament-like light distribution. The development of suitable approaches for describing light propagation in a AT is urgently needed. A mathematical model of the propagation of light through the layers of fat cells is proposed. It has been shown that the sharp local focusing of optical radiation (light localized near the shadow surface of the cells) and its cleavage by coupling whispering gallery modes depends on the optical thickness of the cell layer. The optical coherence tomography numerical simulation and experimental studies results demonstrate the importance of sharp local focusing in AT for understanding its optical properties for physiological conditions and at AT heating.


Assuntos
Adipócitos , Modelos Teóricos , Temperatura , Espalhamento de Radiação , Simulação por Computador
4.
Sci Rep ; 12(1): 21904, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535983

RESUMO

All-dielectric nanophotonics opens a venue for a variety of novel phenomena and scattering regimes driven by unique optical effects in semiconductor and dielectric nanoresonators. Their peculiar optical signatures enabled by simultaneous electric and magnetic responses in the visible range pave a way for a plenty of new applications in nano-optics, biology, sensing, etc. In this work, we investigate fabrication-friendly truncated cone resonators and achieve several important scattering regimes due to the inherent property of cones-broken symmetry along the main axis without involving complex geometries or structured beams. We show this symmetry breaking to deliver various kinds of Kerker effects (generalized and transverse Kerker effects), non-scattering hybrid anapole regime (simultaneous anapole conditions for all the multipoles in a particle leading to the nearly full scattering suppression) and, vice versa, superscattering regime. Being governed by the same straightforward geometrical paradigm, discussed effects could greatly simplify the manufacturing process of photonic devices with different functionalities. Moreover, the additional degrees of freedom driven by the conicity open new horizons to tailor light-matter interactions at the nanoscale.

5.
Opt Lett ; 47(18): 4592-4595, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107040

RESUMO

For flexible tailoring of optical forces, as well as for extraordinary optomechanical effects, additional degrees of freedom should be introduced into a system. Here, we demonstrate that photonic crystals are a versatile platform for optical manipulation due to both Bloch surface waves (BSWs) and the complex character of the reflection coefficient paving a way for controlled optomechanical interactions. We demonstrate enhanced pulling and pushing transversal optical forces acting on a single dipolar bead above a one-dimensional photonic crystal due to directional excitation of BSWs. Our results demonstrate angle- or wavelength-assisted switching between BSW-induced optical pulling and pushing forces. Easy to fabricate for any desired spectral range, photonic crystals are shown to be prospective for precise optical sorting of nanoparticles, which are difficult to sort with conventional optomechanical methods. Our approach opens opportunities for novel, to the best of our knowledge, optical manipulation schemes and platforms, and enhanced light-matter interaction in optical trapping setups.

6.
Sci Rep ; 11(1): 4790, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637821

RESUMO

Unique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices.

7.
Nanoscale Adv ; 3(1): 190-197, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36131865

RESUMO

The creation of single photon sources on a chip is a mid-term milestone on the road to chip-scale quantum computing. An in-depth understanding of the extended multipole decomposition of non-isolated sources of electromagnetic radiation is not only relevant for a microscopic description of fundamental phenomena, such as light propagation in a medium, but also for emerging applications such as single-photon sources. To design single photon emitters on a chip, we consider a ridge dielectric waveguide perturbed with a cylindrical inclusion. For this, we expanded classical multipole decomposition that allows simplifying and interpreting complex optical interactions in an intuitive manner to make it suitable for analyzing light-matter interactions with non-isolated objects that are parts of a larger network, e.g. individual components such as a single photon source of an optical chip. It is shown that our formalism can be used to design single photon sources on a chip.

8.
Opt Lett ; 45(13): 3512-3515, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630886

RESUMO

Tuning the near field using all-dielectric nano-antennas offers a promising approach for trapping atoms, which could enable strong single-atom-photon coupling. Here we report the numerical study of an optical trapping of a single Cs atom above a waveguide with a silicon nano-antenna, which produces a trapping potential for atoms in a chip-scale configuration. Using counter-propagating incident fields, bichromatically detuned from the atomic cesium D-lines, we numerically investigate the dependence of the optical potential on the nano-antenna geometry. We tailor the near-field potential landscape by tuning the evanescent field of the waveguide using a toroidal nano-antenna, a configuration that enables trapping of ultracold Cs atoms. Our research opens up a plethora of trapping atoms applications in a chip-scale manner, from quantum computing to quantum sensing, among others.

9.
Adv Sci (Weinh) ; 7(11): 1903049, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537397

RESUMO

The ever-growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand-new nanophotonic approaches can significantly enhance existing capabilities providing unique functionalities via finely tuned light-matter interactions. A concept is proposed, featuring dual on-chip functionality: boosted optically driven diffusion and nanoparticle sorting. High-index dielectric nanoantennae is specially designed to ensure strongly enhanced spin-orbit angular momentum transfer from a laser beam to the scattered field. Hence, subwavelength optical nanovortices emerge driving spiral motion of plasmonic nanoparticles via the interplay between curl-spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam-based approaches. The nanoparticles mediate nanoconfined fluid motion enabling moving-part-free nanomixing inside a microchamber. Moreover, exploiting the nontrivial size dependence of the curled optical forces makes it possible to achieve precise nanoscale sorting of gold nanoparticles, demanded for on-chip separation and filtering. Altogether, a versatile platform is introduced for further miniaturization of moving-part-free, optically driven microfluidic chips for fast chemical analysis, emulsion preparation, or chemical gradient generation with light-controlled navigation of nanoparticles, viruses or biomolecules.

10.
Nano Lett ; 19(10): 7062-7071, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31496253

RESUMO

Being the polymorphs of calcium carbonate (CaCO3), vaterite and calcite have attracted a great deal of attention as promising biomaterials for drug delivery and tissue engineering applications. Furthermore, they are important biogenic minerals, enabling living organisms to reach specific functions. In nature, vaterite and calcite monocrystals typically form self-assembled polycrystal micro- and nanoparticles, also referred to as spherulites. Here, we demonstrate that alpine plants belonging to the Saxifraga genus can tailor light scattering channels and utilize multipole interference effect to improve light collection efficiency via producing CaCO3 polycrystal nanoparticles on the margins of their leaves. To provide a clear physical background behind this concept, we study optical properties of artificially synthesized vaterite nanospherulites and reveal the phenomenon of directional light scattering. Dark-field spectroscopy measurements are supported by a comprehensive numerical analysis, accounting for the complex microstructure of particles. We demonstrate the appearance of generalized Kerker condition, where several higher order multipoles interfere constructively in the forward direction, governing the interaction phenomenon. As a result, highly directive forward light scattering from vaterite nanospherulites is observed in the entire visible range. Furthermore, ex vivo studies of microstructure and optical properties of leaves for the alpine plants Saxifraga "Southside Seedling" and Saxifraga Paniculata Ria are performed and underline the importance of the Kerker effect for these living organisms. Our results pave the way for a bioinspired strategy of efficient light collection by self-assembled polycrystal CaCO3 nanoparticles via tailoring light propagation directly to the photosynthetic tissue with minimal losses to undesired scattering channels.


Assuntos
Carbonato de Cálcio/metabolismo , Nanopartículas/metabolismo , Folhas de Planta/metabolismo , Saxifragaceae/metabolismo , Cristalização , Luz , Processos Fotoquímicos
11.
Phys Rev Lett ; 122(19): 193905, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144914

RESUMO

All-dielectric resonant nanophotonics lies at the heart of modern optics and nanotechnology due to the unique possibilities to control scattering of light from high-index dielectric nanoparticles and metasurfaces. One of the important concepts of dielectric Mie-resonant nanophotonics is associated with the Kerker effect that drives the unidirectional scattering of light from nanoantennas and Huygens metasurfaces. Here we suggest and demonstrate experimentally a novel effect manifested in the nearly complete simultaneous suppression of both forward and backward scattered fields. This effect is governed by the Fano resonance of an electric dipole and off-resonant quadrupoles, providing necessary phases and amplitudes of the scattered fields to achieve the transverse scattering. We extend this concept to dielectric metasurfaces that demonstrate zero reflection with transverse scattering and strong field enhancement for resonant light filtering, nonlinear effects, and sensing.

12.
Sci Rep ; 9(1): 3438, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837620

RESUMO

All-dielectric nanophotonics lies at a forefront of nanoscience and technology as it allows to control light at the nanoscale using its electric and magnetic components. Bulk silicon does not experience any magnetic response, nevertheless, we demonstrate that the metasurface made of silicon parallelepipeds allows to excite the magnetic dipole moment leading to the broadening and enhancement of the absorption. Our investigations are underpinned by the numerical predictions and the experimental verifications. Also surprisingly we found that the resonant electric quadrupole moment leads to the enhancement of reflection. Our results can be applied for a development of absorption based devices from miniature dielectric absorbers, filters to solar cells and energy harvesting devices.

13.
Beilstein J Nanotechnol ; 9: 1321-1327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977667

RESUMO

For the first time, we estimated perspectives for using a new 2D carbon nanotube (CNT)-graphene hybrid nanocomposite as a base element of a new generation o optical nanodevices. The 2D CNT-graphene hybrid nanocomposite was modelled by two graphene monolayers between which single-walled CNTs with different diameters were regularly arranged at different distances from each other. Spectra of the real and imaginary parts of the diagonal elements of the surface conductivity tensor for four topological models of the hybrid nanocomposite have been obtained. The absorption coefficient for p-polarized and s-polarized radiation was calculated for different topological models of the hybrid nanocomposite. It was found that the characteristic peaks with high intensity appear in the UV region at wavelengths from 150 to 350 nm (related to graphene) and in the optical range from 380 to 740 nm irrespective of the diameter of the tubes and the distance between them. For waves corresponding to the most intense peaks, the absorption coefficient as a function of the angle of incidence was calculated. It was shown that the optical properties of the hybrid nanocomposite were approximately equal for both metallic and semiconductor nanotubes.

14.
Sci Rep ; 8(1): 2029, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391511

RESUMO

Specialized electromagnetic fields can be used for nanoparticle manipulation along a specific path, allowing enhanced transport and control over the particle's motion. In this paper, we investigate the optical forces produced by a curved photonic jet, otherwise known as the "photonic hook", created using an asymmetric cuboid. In our case, this cuboid is formed by appending a triangular prism to one side of a cube. A gold nanoparticle immersed in the cuboid's transmitted field moves in a curved trajectory. This result could be used for moving nanoparticles around obstacles; hence we also consider the changes in the photonic hook's forces when relatively large glass and gold obstacles are introduced at the region where the curved photonic jet is created. We show, that despite the obstacles, perturbing the field distribution, a particle can move around glass obstacles of a certain thickness. For larger glass slabs, the particle will be trapped stably near it. Moreover, we noticed that a partial obstruction of the photonic jet's field using the gold obstacle results in a complete disruption of the particle's trajectory.

15.
Opt Lett ; 43(4): 771-774, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29443990

RESUMO

It is well known that electromagnetic radiation propagates along a straight line, but this common sense was broken by the artificial curved light-the Airy beam. In this Letter, we demonstrate a new type of curved light beam besides the Airy beam, the so-called "photonic hook." This photonic hook is a curved high-intensity focus by a dielectric trapezoid particle illuminated by a plane wave. The difference between the phase velocity and the interference of the waves inside the particle causes the phenomenon of focus bending.

16.
Opt Lett ; 42(4): 835-838, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198877

RESUMO

In this Letter, we demonstrate and investigate the Kerker-type effect in high-index dielectric nanoparticles for which the third-order multipoles give a considerable contribution to the light scattering process. It is shown that the Kerker-type effect (strong suppression of the backward light scattering and, simultaneously, resonant forward light scattering) can be associated with the resonant excitation of a toroidal dipole moment in the system. This effect is realized due to the interference of the scattered waves generated by electric, magnetic, and toroidal dipole moments of high-index nanoparticles.

17.
Sci Rep ; 7: 41014, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112217

RESUMO

Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even though the direction of force might not follow the flow of energy, the positive radiation pressure is maintained inside photonic crystals.

18.
Light Sci Appl ; 6(5): e16258, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30167251

RESUMO

The ability to manipulate small objects with focused laser beams has opened a venue for investigating dynamical phenomena relevant to both fundamental and applied science. Nanophotonic and plasmonic structures enable superior performance in optical trapping via highly confined near-fields. In this case, the interplay between the excitation field, re-scattered fields and the eigenmodes of a structure can lead to remarkable effects; one such effect, as reported here, is particle trapping by laser light in a vicinity of metal surface. Surface plasmon excitation at the metal substrate plays a key role in tailoring the optical forces acting on a nearby particle. Depending on whether the illuminating Gaussian beam is focused above or below the metal-dielectric interface, an order-of-magnitude enhancement or reduction of the trap stiffness is achieved compared with that of standard glass substrates. Furthermore, a novel plasmon-assisted anti-trapping effect (particle repulsion from the beam axis) is predicted and studied. A highly accurate particle sorting scheme based on the new anti-trapping effect is analyzed. The ability to distinguish and configure various electromagnetic channels through the developed analytical theory provides guidelines for designing auxiliary nanostructures and achieving ultimate control over mechanical motion at the micro- and nano-scales.

19.
J Opt Soc Am A Opt Image Sci Vis ; 33(10): 1910-1916, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27828093

RESUMO

Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to the surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As a result, properly designed electromagnetic environments could govern wave phenomena and tailor various characteristics. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial), are analyzed both numerically and experimentally. The effect of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on the scattering phenomena is studied in detail. It is shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering suppression and super-scattering are experimentally observed. Numerical analysis is in agreement with the experiment, performed at the GHz spectral range. The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.

20.
Sci Rep ; 5: 15846, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26514667

RESUMO

Optomechanical manipulation of micro and nano-scale objects with laser beams finds use in a large span of multidisciplinary applications. Auxiliary nanostructuring could substantially improve performances of classical optical tweezers by means of spatial localization of objects and intensity required for trapping. Here we investigate a three-dimensional nanorod metamaterial platform, serving as an auxiliary tool for the optical manipulation, able to support and control near-field interactions and generate both steep and flat optical potential profiles. It was shown that the 'topological transition' from the elliptic to hyperbolic dispersion regime of the metamaterial, usually having a significant impact on various light-matter interaction processes, does not strongly affect the distribution of optical forces in the metamaterial. This effect is explained by the predominant near-fields contributions of the nanostructure to optomechanical interactions. Semi-analytical model, approximating the finite size nanoparticle by a point dipole and neglecting the mutual re-scattering between the particle and nanorod array, was found to be in a good agreement with full-wave numerical simulation. In-plane (perpendicular to the rods) trapping regime, saddle equilibrium points and optical puling forces (directed along the rods towards the light source), acting on a particle situated inside or at the nearby the metamaterial, were found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...