Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(6): e3002146, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289834

RESUMO

Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation.


Assuntos
Meiose , Peixe-Zebra , Animais , Grânulos Citoplasmáticos/metabolismo , Oócitos , Citoplasma , Microtúbulos , Exocitose/fisiologia
2.
Dev Cell ; 58(7): 582-596.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36931269

RESUMO

Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization.


Assuntos
Gastrulação , Peixe-Zebra , Animais , Retroalimentação , Líquido Extracelular , Movimento Celular
3.
Nat Immunol ; 23(8): 1246-1255, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817845

RESUMO

Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.


Assuntos
Linfonodos , Células Estromais , Animais , Fibroblastos , Linfócitos , Camundongos , Camundongos Endogâmicos C57BL
4.
Dev Cell ; 56(2): 213-226, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33321104

RESUMO

Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.


Assuntos
Citoplasma/fisiologia , Citoesqueleto/metabolismo , Citosol/metabolismo , Mecanotransdução Celular , Complexos Multiproteicos/metabolismo , Organelas/metabolismo , Animais , Humanos
5.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675500

RESUMO

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Assuntos
Desenvolvimento Embrionário/genética , Mecanotransdução Celular/genética , Junções Íntimas/genética , Proteína da Zônula de Oclusão-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/genética , Ligação Proteica , Junções Íntimas/fisiologia , Saco Vitelino/crescimento & desenvolvimento , Saco Vitelino/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
6.
Cell ; 177(6): 1463-1479.e18, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31080065

RESUMO

Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation.


Assuntos
Actinas/metabolismo , Ciclo Celular/fisiologia , Oócitos/metabolismo , Actinas/fisiologia , Animais , Polaridade Celular/fisiologia , Citoplasma/metabolismo , Gema de Ovo/fisiologia , Polimerização , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Zigoto
7.
Dev Cell ; 43(2): 198-211.e12, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29033362

RESUMO

Cell-cell contact formation constitutes an essential step in evolution, leading to the differentiation of specialized cell types. However, remarkably little is known about whether and how the interplay between contact formation and fate specification affects development. Here, we identify a positive feedback loop between cell-cell contact duration, morphogen signaling, and mesendoderm cell-fate specification during zebrafish gastrulation. We show that long-lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for ppl cell-fate specification. We further show that Nodal signaling promotes ppl cell-cell contact duration, generating a positive feedback loop between ppl cell-cell contact duration and cell-fate specification. Finally, by combining mathematical modeling and experimentation, we show that this feedback determines whether anterior axial mesendoderm cells become ppl or, instead, turn into endoderm. Thus, the interdependent activities of cell-cell signaling and contact formation control fate diversification within the developing embryo.


Assuntos
Comunicação Celular , Linhagem da Célula , Retroalimentação Fisiológica , Gástrula/metabolismo , Morfogênese/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Padronização Corporal , Diferenciação Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Gástrula/crescimento & desenvolvimento , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Modelos Teóricos , Proteína Nodal/genética , Proteína Nodal/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
8.
Nat Cell Biol ; 19(4): 306-317, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28346437

RESUMO

During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.


Assuntos
Fricção , Sistema Nervoso/embriologia , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Caderinas/metabolismo , Comunicação Celular , Movimento Celular , Embrião não Mamífero/citologia , Endoderma/citologia , Endoderma/embriologia , Gastrulação , Hidrodinâmica , Mesoderma/citologia , Mesoderma/embriologia , Modelos Biológicos , Morfogênese , Mutação/genética , Placa Neural/citologia , Placa Neural/embriologia , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...