Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 332, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123265

RESUMO

BACKGROUND: Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans. METHODS: Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress towards and the achievement of the EoT goal. We have developed gHAT models that include either asymptomatic or animal transmission, and compare these to a baseline gHAT model without either of these transmission routes, to explore the potential role of cryptic infections on the EoT goal. Each model was independently calibrated to five different health zones in the Democratic Republic of the Congo (DRC) using available historical human case data for 2000-2020 (obtained from the World Health Organization's HAT Atlas). We applied a novel Bayesian sequential updating approach for the asymptomatic model to enable us to combine statistical information about this type of transmission from each health zone. RESULTS: Our results suggest that, when matched to past case data, we estimated similar numbers of new human infections between model variants, although human infections were slightly higher in the models with cryptic infections. We simulated the continuation of screen-confirm-and-treat interventions, and found that forward projections from the animal and asymptomatic transmission models produced lower probabilities of EoT than the baseline model; however, cryptic infections did not prevent EoT from being achieved eventually under this approach. CONCLUSIONS: This study is the first to simulate an (as-yet-to-be available) screen-and-treat strategy and found that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could greatly impact all transmission routes in all models, although this resource-intensive intervention should be carefully prioritised.


Assuntos
Erradicação de Doenças , Tripanossomíase Africana , República Democrática do Congo/epidemiologia , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Animais , Humanos , Trypanosoma brucei gambiense , Teorema de Bayes , Moscas Tsé-Tsé/parasitologia
2.
PLoS Negl Trop Dis ; 17(4): e0011299, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37115809

RESUMO

Gambiense human African trypanosomiasis (gHAT) is a deadly vector-borne, neglected tropical disease found in West and Central Africa targeted for elimination of transmission (EoT) by 2030. The recent pandemic has illustrated how it can be important to quantify the impact that unplanned disruption to programme activities may have in achieving EoT. We used a previously developed model of gHAT fitted to data from the Democratic Republic of the Congo, the country with the highest global case burden, to explore how interruptions to intervention activities, due to e.g. COVID-19, Ebola or political instability, could impact progress towards EoT and gHAT burden. We simulated transmission and reporting dynamics in 38 regions within Kwilu, Mai Ndombe and Kwango provinces under six interruption scenarios lasting for nine or twenty-one months. Included in the interruption scenarios are the cessation of active screening in all scenarios and a reduction in passive detection rates and a delay or suspension of vector control deployments in some scenarios. Our results indicate that, even under the most extreme 21-month interruption scenario, EoT is not predicted to be delayed by more than one additional year compared to the length of the interruption. If existing vector control deployments continue, we predict no delay in achieving EoT even when both active and passive screening activities are interrupted. If passive screening remains as functional as in 2019, we expect a marginal negative impact on transmission, however this depends on the strength of passive screening in each health zone. We predict a pronounced increase in additional gHAT disease burden (morbidity and mortality) in many health zones if both active and passive screening were interrupted compared to the interruption of active screening alone. The ability to continue existing vector control during medical activity interruption is also predicted to avert a moderate proportion of disease burden.


Assuntos
COVID-19 , Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/diagnóstico , Trypanosoma brucei gambiense , República Democrática do Congo/epidemiologia
3.
PLoS Negl Trop Dis ; 16(7): e0010599, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816487

RESUMO

Gambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In this study we focus on the country with the most gHAT disease burden, the Democratic Republic of Congo (DRC), and use mathematical modelling to assess whether animals may contribute to transmission in specific regions, and if so, how their presence could impact the likelihood and timing of EoT. By fitting two model variants-one with, and one without animal transmission-to the human case data from 2000-2016 we estimate model parameters for 158 endemic health zones of the DRC. We evaluate the statistical support for each model variant in each health zone and infer the contribution of animals to overall transmission and how this could impact predicted time to EoT. We conclude that there are 24/158 health zones where there is substantial to decisive statistical support for some animal transmission. However-even in these regions-we estimate that animals would be extremely unlikely to maintain transmission on their own. Animal transmission could hamper progress towards EoT in some settings, with projections under continuing interventions indicating that the number of health zones expected to achieve EoT by 2030 reduces from 68/158 to 61/158 if animal transmission is included in the model. With supplementary vector control (at a modest 60% tsetse reduction) added to medical screening and treatment interventions, the predicted number of health zones meeting the goal increases to 147/158 for the model including animal transmission. This is due to the impact of vector reduction on transmission to and from all hosts.


Assuntos
Tripanossomíase Africana , Animais , República Democrática do Congo/epidemiologia , Previsões , Humanos , Modelos Teóricos , Trypanosoma brucei gambiense , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle
4.
Nat Commun ; 13(1): 1448, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304479

RESUMO

Gambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including active and passive screening and vector control, on disease burden and transmission across 168 endemic health zones in the Democratic Republic of the Congo. Median projected years of elimination of transmission show only 98 health zones are on track despite significant reduction in disease burden under medical-only strategies (64 health zones if > 90% certainty required). Blanket coverage with vector control is impractical, but is predicted to reach the target in all heath zones. Utilising projected disease burden under the uniform medical-only strategy, we provide a priority list of health zones for consideration for supplementary vector control alongside medical interventions.


Assuntos
Tripanossomíase Africana , República Democrática do Congo/epidemiologia , Humanos , Programas de Rastreamento , Probabilidade , Trypanosoma brucei gambiense , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle
5.
PLoS Comput Biol ; 17(1): e1008532, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513134

RESUMO

Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of Congo (DRC), which accounted for 84% of the global case burden in 2016, to explore changes in transmission across the country and elucidate factors which may have contributed to the persistence of disease or success of interventions in different regions. We present a Bayesian fitting methodology, applied to 168 endemic health zones (∼100,000 population size), which allows for calibration of a mechanistic gHAT model to case data (from the World Health Organization HAT Atlas) in an adaptive and automated framework. It was found that the model needed to capture improvements in passive detection to match observed trends in the data within former Bandundu and Bas Congo provinces indicating these regions have substantially reduced time to detection. Health zones in these provinces generally had longer burn-in periods during fitting due to additional model parameters. Posterior probability distributions were found for a range of fitted parameters in each health zone; these included the basic reproduction number estimates for pre-1998 (R0) which was inferred to be between 1 and 1.14, in line with previous gHAT estimates, with higher median values typically in health zones with more case reporting in the 2000s. Previously, it was not clear whether a fall in active case finding in the period contributed to the declining case numbers. The modelling here accounts for variable screening and suggests that underlying transmission has also reduced greatly-on average 96% in former Equateur, 93% in former Bas Congo and 89% in former Bandundu-Equateur and Bandundu having had the highest case burdens in 2000. This analysis also sets out a framework to enable future predictions for the country.


Assuntos
Modelos Estatísticos , Trypanosoma brucei gambiense , Tripanossomíase Africana , Teorema de Bayes , Biologia Computacional , República Democrática do Congo/epidemiologia , Humanos , Modelos Biológicos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA