Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 10: 1160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680951

RESUMO

The mycotoxin zearalenone (ZEN) is produced by many plant pathogenic Fusarium species. It is well known for its estrogenic activity in humans and animals, but whether ZEN has a role in plant-pathogen interaction and which process it is targeting in planta was so far unclear. We found that treatment of Arabidopsis thaliana seedlings with ZEN induced transcription of the AtHSP90.1 gene. This heat shock protein (HSP) plays an important role in plant-pathogen interaction, assisting in stability and functionality of various disease resistance gene products. Inhibition of HSP90 ATPase activity impairs functionality. Because HSP90 inhibitors are known to induce HSP90 gene expression and due to the structural similarity with the known HSP90 inhibitor radicicol (RAD), we tested whether ZEN and its phase I metabolites α- and ß-zearalenol are also HSP90 ATPase inhibitors. Indeed, AtHSP90.1 and wheat TaHSP90-2 were inhibited by ZEN and ß-zearalenol, while α-zearalenol was almost inactive. Plants can efficiently glycosylate ZEN and α/ß-zearalenol. We therefore tested whether glucosylation has an effect on the inhibitory activity of these metabolites. Expression of the A. thaliana glucosyltransferase UGT73C6 conferred RAD resistance to a sensitive yeast strain. Glucosylation of RAD, ZEN, and α/ß-zearalenol abolished the in vitro inhibitory activity with recombinant HSP90 purified from Escherichia coli. In conclusion, the mycotoxin ZEN has a very prominent target in plants, HSP90, but it can be inactivated by glycosylation. This may explain why there is little evidence for a virulence function of ZEN in host plants.

2.
BMC Genomics ; 17: 417, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245696

RESUMO

BACKGROUND: The trichothecene mycotoxins deoxynivalenol (DON) and trichothecin (TTC) are inhibitors of eukaryotic protein synthesis. Their effect on cellular homeostasis is poorly understood. We report a systematic functional investigation of the effect of DON and TTC on the yeast Saccharomyces cerevisiae using genetic array, network and microarray analysis. To focus the genetic analysis on intracellular consequences of toxin action we eliminated the PDR5 gene coding for a potent pleiotropic drug efflux protein potentially confounding results. We therefore used a knockout library with a pdr5Δ strain background. RESULTS: DON or TTC treatment creates a fitness bottleneck connected to ribosome efficiency. Genes isolated by systematic genetic array analysis as contributing to toxin resistance function in ribosome quality control, translation fidelity, and in transcription. Mutants in the E3 ligase Hel2, involved in ribosome quality control, and several members of the Rpd3 histone deacetylase complex were highly sensitive to DON. DON and TTC have similar genetic profiles despite their different toxic potency. Network analysis shows a coherent and tight network of genetic interactions among the DON and TTC resistance conferring gene products. The networks exhibited topological properties commonly associated with efficient processing of information. Many sensitive mutants have a "slow growth" gene expression signature. DON-exposed yeast cells increase transcripts of ribosomal protein and histone genes indicating an internal signal for growth enhancement. CONCLUSIONS: The combination of gene expression profiling and analysis of mutants reveals cellular pathways which become bottlenecks under DON and TTC stress. These are generally directly or indirectly connected to ribosome biosynthesis such as the general secretory pathway, cytoskeleton, cell cycle delay, ribosome synthesis and translation quality control. Gene expression profiling points to an increased demand of ribosomal components and does not reveal activation of stress pathways. Our analysis highlights ribosome quality control and a contribution of a histone deacetylase complex as main sources of resistance against DON and TTC.


Assuntos
Ribossomos/metabolismo , Tricotecenos/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/fisiologia , Montagem e Desmontagem da Cromatina , Análise por Conglomerados , Farmacorresistência Fúngica , Epistasia Genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Genes Fúngicos , Histonas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação
3.
J Agric Food Chem ; 59(17): 9709-14, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21800832

RESUMO

Trichothecenes are an important class of mycotoxins that act as potent protein synthesis inhibitors in eukaryotic organisms. The compound 4,15-diacetoxyscirpenol is highly toxic for plants and animals. Potatoes are especially prone to be contaminated with 4,15-diacetoxyscirpenol after infection with Fusarium sambucinum. In the current study, the reduction of 4,15-diacetoxyscirpenol during thermal treatment in aqueous solution was monitored. A new derivative was detected and named DAS-M1. After isolation, DAS-M1 was characterized with LC-HR-MS and LC-MS/MS and structurally elucidated with (1)H, (13)C, and 2D NMR. Potatoes were inoculated with F. sambucinum, and the infected potatoes were cooked at 100 or 121 °C, respectively. A reduction of 4,15-diacetoxyscirpenol from about 26% (1 h at 100 °C) to 100% (4 h at 121 °C) was detected by means of LC-MS/MS analysis. The effects of different pH values on the reduction of 4,15-diacetoxyscirpenol were investigated, showing higher conversion rates at more acidic pH values. In addition, the toxicity of 4,15-diacetoxyscirpenol and DAS-M1 was compared in vitro using a wheat germ transcription/translation assay and in vivo on Saccharomyces cerevisiae. The results show that the inhibitory effect of DAS-M1 on yeast growth is about 50 times lower and inhibition of protein synthesis is about 100 times lower than that of 4,15-diacetoxyscirpenol.


Assuntos
Cumarínicos/metabolismo , Contaminação de Alimentos/análise , Compostos Heterocíclicos de 4 ou mais Anéis/análise , Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Temperatura Alta , Solanum tuberosum/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Concentração de Íons de Hidrogênio , Micotoxinas/análise , Tubérculos/química , Tubérculos/microbiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA