Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(5): 4073-4082, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877344

RESUMO

BACKGROUND: Anaplastic thyroid cancer (ATC) is an aggressive subtype of thyroid cancer, accounting for 1 to 2% of all cases. Deregulations of cell cycle regulatory genes including cyclins, cyclin-dependent kinases (CDKs), and endogenous inhibitors of CDKs (CKIs) are hallmarks of cancer cells and hence, studies indicate the inhibition of CDK4/6 kinases and cell cycle progression as potent therapeutic strategies. In this study, we investigated the anti-tumor activity of Abemaciclib, a CDK4 and CDK6 inhibitor, in ATC cell lines. METHODS AND RESULTS: The ATC cell lines C643 and SW1736 were selected to study the antiproliferative effects of Abemaciclib using a cell proliferation assay and crystal violet staining assay. Annexin V/PI staining and cell cycle analysis by flow cytometry were also performed to examine the effects on apoptosis induction and cell cycle arrest. Wound healing assay and zymography analysis examined the effects of the drug on invasive abilities of ATC cells and Western blot analyses were applied to further study the anti-tumor mechanism of Abemaciclib, in addition to combination treatment with alpelisib. Our data demonstrated that Abemaciclib significantly inhibited cell proliferation and increased cellular apoptosis and cell cycle arrest in ATC cell lines, while considerably reducing cell migration and colony formation. The mechanism seemed to involve the PI3K pathway. CONCLUSION: Our preclinical data highlight CDK4/6 as interesting therapeutic targets in ATC and suggest CDK4/6-blockade therapies as promising strategies in this malignancy.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/genética , Ciclo Celular , Apoptose , Proliferação de Células
2.
Life Sci ; 287: 120100, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715143

RESUMO

AIMS: Glioblastoma (GB) is the most aggressive type of brain tumor. Rapid progression, active angiogenesis, and therapy resistance are major reasons for its high mortality. Elevated expression of members of the vascular endothelial growth factor (VEGF) family suggests that anti-VEGF therapies may be potent anti-glioma therapeutic approaches. Here, we evaluated the anti-tumor activity of cediranib, a pan inhibitor of the VEGF receptors, on GB cells. MATERIALS AND METHODS: Anti-proliferative effects of cediranib were determined using MTT, crystal-violet staining, clonogenic and anoikis resistance assays. Apoptosis induction was assessed by Annexin V/PI staining and Western blot analysis and aggressive abilities of GB cells were investigated using cell migration/invasion assays and zymography. Small-interfering RNA (siRNA)-mediated Knockdown was used to study resistance mechanisms. The anti-proliferative and apoptotic effects of cediranib in combination with radiotherapy, temozolomide, bevacizumab were also evaluated using MTT, Annexin V/PI staining and Western blot analysis for cleaved PARP-1. KEY FINDINGS: Cediranib reduced GB cell proliferation, induced apoptotic cell death and inhibited the aggressive abilities of GB cells. Cediranib synergistically increased the anti-proliferative and apoptotic effects of radiotherapy and bevacizumab and augmented the sensitivity of GB cells to temozolomide chemotherapy. In addition, knockdown of MET and AKT potentiated cediranib sensitivity in cediranib-resistant GB cells. SIGNIFICANCE: These findings suggest that cediranib, alone or in combination with other therapeutics, is a promising strategy for the treatment of GB and provide a rationale for further investigation of the therapeutic potential of cediranib for the treatment of this fatal malignancy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Glioblastoma/metabolismo , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Inibidores do Crescimento/farmacologia , Inibidores do Crescimento/uso terapêutico , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
3.
Eur J Pharmacol ; 882: 173298, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32593665

RESUMO

Prostate Cancer is the second cause of cancer-related death in men and development of metastatic castration-resistant prostate cancer (mCRPC) is the major reason for its high mortality rate. Despite various treatments, all patients succumb to resistant disease, suggesting that there is a pressing need for novel and more efficacious treatments. Members of the vascular endothelial growth factor (VEGF) family play key roles in the tumorigenesis of mCRPC, indicating that VEGF-targeted therapies may have potential anti-tumor efficacy in this malignancy. However, due to compensatory activation of other family members, clinical trials with single-targeted VEGF inhibitors were discouraging. Here, we determined the anti-neoplastic activity of Cediranib, a pan-VEGF receptor inhibitor, in the mCRPC cell lines. Anti-growth effects of Cediranib were studied by MTT and BrdU cell proliferation assays and crystal violet staining. Annexin V/PI, radiation therapy and cell motility assays were carried out to examine the effects of Cediranib on apoptosis, radio-sensitivity and cell motility. Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analyses were conducted to determine the molecular mechanisms underlying the anti-tumor activity of Cediranib. Cediranib decreased cell viability and induced apoptosis via inhibition of the anti-apoptotic proteins. Combination with Cediranib synergistically increased Docetaxel sensitivity and potentiated the effects of radiation therapy. Furthermore, Cediranib impaired cell motility via decrease in the expression of the epithelial-to-mesenchymal transition markers. These findings suggest that Cediranib may have anti-tumor activity in mCRPC cells and warrant further investigation on the therapeutic activity of this pan-VEGF receptor inhibitor in mCRPC.


Assuntos
Adenocarcinoma , Antineoplásicos/farmacologia , Neoplasias da Próstata , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Terapia Combinada , Docetaxel/farmacologia , Raios gama , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/genética
4.
Tumori ; 105(1): 84-91, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30021477

RESUMO

INTRODUCTION:: Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy worldwide and despite an initial response to therapeutic agents, the majority of patients have chemoresistant disease. There is no treatment strategy with proven efficacy against chemoresistant EOC and in this setting, overcoming therapy resistance is the key to successful treatment. METHODS:: This study aimed to investigate expression of interleukin-6 (IL-6) (IL-6) and IL-6 receptor (IL-6R) in a panel of the EOC cell lines. To achieve this, the expression of IL-6 and its receptor were compared in the EOC cells using quantitative reverse transcription polymerase chain reaction. MTT assay was performed to obtain chemosensitivity of the EOC cells. RESULTS:: In this report, we show that expressions of IL6 and IL6R are higher in therapy-resistant EOC cells compared to sensitive ones. Higher expression of IL6 and its receptor correlated with resistance to certain chemotherapeutic agents. Moreover, our findings showed that combination of tocilizumab (Actemra; Roche), an anti-IL-6R monoclonal antibody, with carboplatin synergistically inhibited growth and proliferation of the EOC cells and the most direct axis for IL-6 gene expression was NF-κB pathway. CONCLUSION:: Collectively, our findings suggest that blockade of the IL-6 signaling pathway with anti-IL-6 receptor antibody tocilizumab might resensitize the chemoresistant cells to the current chemotherapeutics.


Assuntos
Interleucina-6/metabolismo , Neoplasias Ovarianas/metabolismo , Receptores de Interleucina-6/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Carboplatina/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , NF-kappa B/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
5.
Int J Biochem Cell Biol ; 99: 1-9, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567488

RESUMO

Epithelial ovarian cancer (EOC) has exhibited marginal improvement in survival rate, despite advances in surgical debulking and chemotherapy regimens. Although the majority of EOC patients achieve a clinical remission after induction therapy, over 80% relapse and succumb to chemoresistant disease. In this regard, it is of paramount importance to elucidate molecular mechanisms and signaling pathways which promote therapy resistance in EOC in order to devise novel and more effective treatment strategies. In this study, we showed that activation of nuclear factor-κB (NF-κB) is significantly higher in therapy-resistant EOC cells compared to chemosensitive counterparts, which was positively associated with resistance to cisplatin, carboplatin, paclitaxel and erlotinib. Bay 11-7082, a highly selective NF-κB inhibitor, reduced cell proliferation, clonogenicity and anoikis resistance in the therapy-resistant EOC cells and induced apoptotic cell death. Moreover, Bay 11-7082 decreased the expression of pro-survival, inflammatory and metastatic genes and synergistically increased anti-proliferative efficacy of cisplatin, carboplatin, paclitaxel and erlotinib. Altogether, these findings suggest that NF-κB is an attractive therapeutic target in EOC to be exploited in translational oncology and Bay 11-7082 is a potential anti-cancer drug to overcome chemoresistance and inhibit proliferation of the EOC cells.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Neoplasias Ovarianas/patologia , Anoikis/efeitos dos fármacos , Antineoplásicos/farmacologia , Feminino , Humanos , NF-kappa B/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA