Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931897

RESUMO

This review focuses on factors and the fabrication techniques affecting the microarchitecture of tissue engineering scaffolds from the second most abundant biopolymer, chitin. It emphasizes the unique potentiality of this polymer in tissue engineering (TE) applications and highlights the variables important to achieve tailored scaffold properties. First, we describe aspects of scaffolds' design, and the complex interplay between chitin types, solvent systems, additives, and fabrication techniques to incorporate porosity, with regard to best practices. In the following section, we provide examples of scaffolds' use, with a focus on in vitro cell studies. Finally, an analysis of their biodegradability is presented. Our review emphasizes the potentiality of chitin and the pressing need for further research to overcome existing challenges and fully harness its capabilities in tissue engineering.

2.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891947

RESUMO

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Assuntos
Betaína , Cátions , Colina , Betaína/química , Betaína/análogos & derivados , Colina/química , Colina/análogos & derivados , Cátions/química , Ésteres/química , Compostos de Amônio Quaternário/química , Humanos
3.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338998

RESUMO

Measures to endorse the adoption of eco-friendly biodegradable plastics as a response to the scale of plastic pollution has created a demand for innovative products from materials from Nature. Ionic liquids (ILs) have the ability to disrupt the hydrogen bonding network of biopolymers, increase the mobility of biopolymer chains, reduce friction, and produce materials with various morphologies and mechanical properties. Due to these qualities, ILs are considered ideal for plasticizing biopolymers, enabling them to meet a wide range of specifications for biopolymeric materials. This mini-review discusses the effect of different IL-plasticizers on the processing, tensile strength, and elasticity of materials made from various biopolymers (e.g., starch, chitosan, alginate, cellulose), and specifically covers IL-plasticized packaging materials and materials for biomedical and electrochemical applications. Furthermore, challenges (cost, scale, and eco-friendliness) and future research directions in IL-based plasticizers for biopolymers are discussed.


Assuntos
Quitosana , Líquidos Iônicos , Líquidos Iônicos/química , Plastificantes/química , Celulose/química , Biopolímeros , Quitosana/química
4.
Chem Rev ; 123(20): 11894-11953, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37797342

RESUMO

This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.


Assuntos
Líquidos Iônicos , Estudos Prospectivos , Preparações Farmacêuticas , Solventes
5.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687210

RESUMO

Bleached and cationized cotton fabrics were chemically modified with reactive organoselenium compounds through the nucleophilic aromatic substitution (SNAr) reaction, which allowed for organo-selenium attachment onto the surface of cotton fabrics via covalent bonds and, in the case of the cationized cotton fabric, additional ionic interactions. The resulting textiles exhibited potent bactericidal activity against S. aureus (99.99% reduction), although only moderate activity was observed against E. coli. Fabrics treated with reactive organo-selenium compounds also exhibited fungicidal activities against C. albicans, and much higher antifungal activity was observed when organo-selenium compounds were applied to the cationized cotton in comparison to the bleached cotton. The treatment was found to be durable against rigorous washing conditions (non-ionic detergent/100 °C). This paper is the first report on a novel approach integrating the reaction of cotton fabrics with an organo-selenium antimicrobial agent. This approach is attractive because it provides a method for imparting antimicrobial properties to cotton fabrics which does not disrupt the traditional production processes of a textile mill.


Assuntos
Anti-Infecciosos , Compostos de Selênio , Selênio , Anti-Infecciosos/farmacologia , Candida albicans , Escherichia coli , Ácido Hipocloroso , Selênio/farmacologia , Staphylococcus aureus , Têxteis
6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259417

RESUMO

This mini-review focuses on the various roles that ionic liquids (ILs) play in the development and applications of biopolymer-based drug delivery systems (DDSs). Biopolymers are particularly attractive as drug delivery matrices due to their biocompatibility, low immunogenicity, biodegradability, and strength, whereas ILs can assist the formation of drug delivery systems. In this work, we showcase the different strategies that were explored using ILs in biopolymer-based DDSs, including impregnation of active pharmaceutical ingredients (APIs)-ILs into biopolymeric materials, employment of the ILs to simplify the process of making the biopolymer-based DDSs, and using the ILs either as dopants or as anchoring agents.

7.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175574

RESUMO

The search for biocompatible and renewable materials for the next generation of energy devices has led to increasing interest in using biopolymers as a matrix component for the development of electric double-layer capacitors (EDLCs). However, using biopolymers as host matrices presents limitations in performance and scalability. At the same time, ionic liquids (ILs) have shown exceptional properties as non-aqueous electrolytes. This review intends to highlight the progress in integrating ILs and biopolymers for EDLC. While ILs have been used as solvents to process biopolymers and electrolyte materials, biopolymers have been utilized to provide novel chemistries of electrolyte materials via one of the following scenarios: (1) acting as host polymeric matrices for IL-support, (2) performing as polymeric fillers, and (3) serving as backbone polymer substrates for synthetic polymer grafting. Each of these scenarios is discussed in detail and supported with several examples. The use of biopolymers as electrode materials is another topic covered in this review, where biopolymers are used as a source of carbon or as a flexible support for conductive materials. This review also highlights current challenges in materials development, including improvements in robustness and conductivity, and proper dispersion and compatibility of biopolymeric and synthetic polymeric matrices for proper interface bonding.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Biopolímeros/química , Solventes , Polímeros/química , Eletrólitos/química
8.
Chem Rec ; 23(8): e202200256, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36604866

RESUMO

There will be common challenges to scaling-up any ionic liquids separations technologies which require very large volumes of ionic liquid. Some of these challenges are illustrated in this personal account which chronicles the extraction of chitin from shrimp shell from discovery to current commercialization efforts. The road being taken from discovery in an academic laboratory, through attempts to navigate the scaling-up to commercial scale using the vehicle of a faculty startup company is rewarding, but fraught with roadblocks, detours, and unexpected challenges. The differences in 'technically feasible' and 'commercially viable' are not always evident from the beginning of the journey, however, one wonders what achievements we miss as a Society because it was assumed to not be commercially viable.

9.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296604

RESUMO

The utilization of cellulose to its full potential is constrained by its recalcitrance to dissolution resulting from the rigidity of polymeric chains, high crystallinity, high molecular weight, and extensive intra- and intermolecular hydrogen bonding network. Therefore, pretreatment of cellulose is usually considered as a step that can help facilitate its dissolution. We investigated the use of microwave oxygen plasma as a pre-treatment strategy to enhance the dissolution of cotton fibers in aqueous NaOH/Urea solution, which is considered to be a greener solvent system compared to others. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Powder X-ray Diffraction analyses revealed that plasma pretreatment of cotton cellulose leads to physicochemical changes of cotton fibers. Pretreatment of cotton cellulose with oxygen plasma for 20 and 40 min resulted in the reduction of the molecular weight of cellulose by 36% and 60% and crystallinity by 16% and 25%, respectively. This reduction in molecular weight and crystallinity led to a 34% and 68% increase in the dissolution of 1% (w/v) cotton cellulose in NaOH/Urea solvent system. Thus, treating cotton cellulose with microwave oxygen plasma alters its physicochemical properties and enhanced its dissolution.


Assuntos
Celulose , Micro-Ondas , Celulose/química , Hidróxido de Sódio/química , Solubilidade , Pós , Fibra de Algodão , Solventes , Ureia/química , Oxigênio
10.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807226

RESUMO

The isolation of chitin utilizing ionic liquid 1-ethyl-3-methylimidazolium acetate has been determined to result in polymer contaminated with proteins. For the first time, the proteins in chitin extracted with ionic liquid have been quantified; the protein content was found to vary from 1.3 to 1.9% of the total weight. These proteins were identified and include allergenic proteins such as tropomyosin. In order to avoid 'traditional' hydroxide-based deproteinization of chitin, which could reduce the molecular weight of the final product, alternative deproteinization strategies were attempted. Testing of the previously reported deproteinization method using aqueous K3PO4 resulted in protein reduction by factors varying from 2 to 10, but resulted in significant phosphate salt contamination of the final product. Contrarily, the incorporation of GRAS (Generally Recognized as Safe) compound Polysorbate 80 into the polymer washing step provided the polymer of comparable purity with no contaminants. This study presents new options for the deproteinization of chitin that can replace traditional approaches with methods that are environmentally friendly and can produce high purity polymer.


Assuntos
Quitina , Líquidos Iônicos , Peso Molecular , Polímeros , Proteínas
11.
Carbohydr Polym ; 289: 119408, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483831

RESUMO

The study evaluated the effect of cryogrinding, a relatively new, cost-effective, and sustainable mechanical treatment method, on physicochemical properties of two different micronaire (3.6- and 5.3-) cotton fiber cellulose. Native (type I), mercerized (type II), and acidulated cellulose were subjected to cryogrinding for 48 and 96 min, and their physicochemical properties were investigated. The results demonstrated that cryogrinding resulted in partial amorphization of native and mercerized celluloses, particle size decrease, and a slight reduction of T50%. Importantly, degree of polymerization (DP) of native cellulose reduced significantly: more than two-fold after 12 cycles and more than three-fold after 24 cycles of cryogrinding. No difference in properties was found between 3.6- and 5.3-micronaire cellulose. Advantageous impacts of cryogrinding found in this work will help signify the potential of this technique in cellulose processing and enable the identification of areas for future development.


Assuntos
Celulose , Fibra de Algodão , Celulose/química , Polimerização
12.
Polymers (Basel) ; 13(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34960895

RESUMO

As the most abundant natural polymer, cellulose is a prime candidate for the preparation of both sustainable and economically viable polymeric products hitherto predominantly produced from oil-based synthetic polymers. However, the utilization of cellulose to its full potential is constrained by its recalcitrance to chemical processing. Both fundamental and applied aspects of cellulose dissolution remain active areas of research and include mechanistic studies on solvent-cellulose interactions, the development of novel solvents and/or solvent systems, the optimization of dissolution conditions, and the preparation of various cellulose-based materials. In this review, we build on existing knowledge on cellulose dissolution, including the structural characteristics of the polymer that are important for dissolution (molecular weight, crystallinity, and effect of hydrophobic interactions), and evaluate widely used non-derivatizing solvents (sodium hydroxide (NaOH)-based systems, N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl), N-methylmorpholine-N-oxide (NMMO), and ionic liquids). We also cover the subsequent regeneration of cellulose solutions from these solvents into various architectures (fibers, films, membranes, beads, aerogels, and hydrogels) and review uses of these materials in specific applications, such as biomedical, sorption, and energy uses.

13.
Polymers (Basel) ; 13(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641248

RESUMO

Petroleum-based synthetic plastics play an important role in our life. As the detrimental health and environmental effects of synthetic plastics continue to increase, the renewable, degradable and recyclable properties of cellulose make subsequent products the "preferred environmentally friendly" alternatives, with a small carbon footprint. Despite the fact that the bioplastic industry is growing rapidly with many innovative discoveries, cellulose-based bioproducts in their natural state face challenges in replacing synthetic plastics. These challenges include scalability issues, high cost of production, and most importantly, limited functionality of cellulosic materials. However, in order for cellulosic materials to be able to compete with synthetic plastics, they must possess properties adequate for the end use and meet performance expectations. In this regard, surface modification of pre-made cellulosic materials preserves the chemical profile of cellulose, its mechanical properties, and biodegradability, while diversifying its possible applications. The review covers numerous techniques for surface functionalization of materials prepared from cellulose such as plasma treatment, surface grafting (including RDRP methods), and chemical vapor and atomic layer deposition techniques. The review also highlights purposeful development of new cellulosic architectures and their utilization, with a specific focus on cellulosic hydrogels, aerogels, beads, membranes, and nanomaterials. The judicious choice of material architecture combined with a specific surface functionalization method will allow us to take full advantage of the polymer's biocompatibility and biodegradability and improve existing and target novel applications of cellulose, such as proteins and antibodies immobilization, enantiomers separation, and composites preparation.

14.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825444

RESUMO

At the moment, there are no U.S. Food and Drug Administration (U.S. FDA)-approved drugs for the treatment of COVID-19, although several antiviral drugs are available for repurposing. Many of these drugs suffer from polymorphic transformations with changes in the drug's safety and efficacy; many are poorly soluble, poorly bioavailable drugs. Current tools to reformulate antiviral APIs into safer and more bioavailable forms include pharmaceutical salts and cocrystals, even though it is difficult to classify solid forms into these regulatory-wise mutually exclusive categories. Pure liquid salt forms of APIs, ionic liquids that incorporate APIs into their structures (API-ILs) present all the advantages that salt forms provide from a pharmaceutical standpoint, without being subject to solid-state matter problems. In this perspective article, the myths and the most voiced concerns holding back implementation of API-ILs are examined, and two case studies of API-ILs antivirals (the amphoteric acyclovir and GSK2838232) are presented in detail, with a focus on drug property improvement. We advocate that the industry should consider the advantages of API-ILs which could be the genesis of disruptive innovation and believe that in order for the industry to grow and develop, the industry should be comfortable with a certain element of risk because progress often only comes from trying something different.


Assuntos
Aciclovir/química , Antivirais/química , Betacoronavirus/efeitos dos fármacos , Butiratos/química , Crisenos/química , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Aciclovir/farmacologia , Antivirais/farmacologia , Disponibilidade Biológica , Butiratos/farmacologia , COVID-19 , Química Farmacêutica/métodos , Crisenos/farmacologia , Reposicionamento de Medicamentos/métodos , Humanos , Líquidos Iônicos/química , Pandemias , Triterpenos Pentacíclicos , SARS-CoV-2 , Solubilidade , Tratamento Farmacológico da COVID-19
15.
Artigo em Inglês | MEDLINE | ID: mdl-32117907

RESUMO

Lignocellulosic biomass biorefinery is the most extensively investigated biorefinery model. At the same time, chitin, structurally similar to cellulose and the second most abundant polymer on Earth, represents a unique chemical structure that allows the direct manufacture of nitrogen-containing building blocks and intermediates, a goal not accomplishable using lignocellulosic biomass. However, the recovery, dissolution, and treatment of chitin was fairly challenging until the polymer's easy dissolution in ionic liquids (salts that are liquid at room temperature) was discovered. In this systematic review, we highlight recent developments in the processing of chitin, with a particular emphasis placed on methods conducted with the help of ionic liquids used as solvents, co-solvents, or catalysts. Such use of ionic liquids in the field of chemical transformations of chitin not only allows for shorter times and less harsh reaction conditions, but also results in different outcomes and higher product yields when compared with reactions conducted in "traditional" manner. Valorization of biomass in general, and chitin in particular, is a key enabling strategy of the circular economy, due to the importance of the sustainable production of biomass-based goods and chemicals and full chain resource efficiency. Economics is driven by the production of high-value chemicals or chemical intermediates from various biomasses, and chitinous biomass is a valuable potential resource. A fundamental "paradigm shift" will radically change the balance of oil-based chemicals to biopolymer-based chemicals, and chitin valorization is a necessary step aimed toward its full market competitiveness and flexibility.

16.
Adv Biochem Eng Biotechnol ; 168: 177-198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29744543

RESUMO

Chitin isolated through microwave-assisted dissolution using ionic liquids is a high molecular weight (MW) polymer that can be manufactured into materials of different architectures (e.g., fibers, films, microspheres, nanostructured materials) to be used as wound care dressings, drug delivery devices, scaffolds, etc. However, because of differences from traditional isolation methods and, thus, differences in polymer length and degree of deacetylation, it could exhibit bio-related properties that differ from those of traditionally 'pulped' chitin. Here we present the initial assessments of bio-related chitin properties in order to provide a useful scientific basis for clinical applications: biocompatibility, cytotoxicity (intracutaneous reactivity), wound healing efficacy, histological evaluation of the wounds treated with chitin dressing, and antibacterial activity. We also provide the studies that outline potential applications of chitin as a raw polymer for preparation of biomaterials. Graphical Abstract.


Assuntos
Materiais Biocompatíveis , Quitina , Líquidos Iônicos , Bandagens , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Quitina/química , Quitina/metabolismo , Líquidos Iônicos/química , Polímeros/química , Cicatrização
17.
Carbohydr Polym ; 199: 228-235, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143125

RESUMO

Chitin, one of Nature's most abundant biopolymers, can be obtained by either traditional chemical pulping or by extraction using the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate. The IL extraction and coagulation process provides access to a unique chitin, with an open hydrated gel-like structure. Here, enzymatic hydrolysis of this chitin hydrogel, dried shrimp shell, chitin extracted from shrimp shells using IL and then dried, and commercial chitin was carried out using chitinase from Streptomyces griseus. The enzymatic hydrolysis of shrimp shells resulted only in the monomer N-acetylglucosamine, while much higher amounts of the dimer (N,N'-diacetylchitobiose) compared to the monomer were detected when using all forms of 'pure' chitin. Interestingly, small amounts of the trimer (N,N',N''-triacetylchitotriose) were also detected when the IL-chitin hydrogel was used as substrate. Altogether, our findings indicate that the product distribution and yield are highly dependent on the substrate selected for the reaction and its hydrated state.


Assuntos
Quitina/química , Quitinases/química , Imidazóis/química , Líquidos Iônicos/química , Acetilglucosamina/síntese química , Animais , Quitina/isolamento & purificação , Hidrólise , Penaeidae/química , Streptomyces griseus/enzimologia , Temperatura
18.
Toxicol Sci ; 161(2): 249-265, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106695

RESUMO

The potential of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) to dissolve a variety of biopolymers such as cellulose and chitin, makes it an attractive candidate for scaled-up industrial utilization. In fact, the first steps towards its use at industrial scale have been taken. This increases the urgency to fill the knowledge gaps in its toxicity and environmental impact in order to predict and control its environmental fate. In this mini-review, we discuss the available literature surrounding this key IL. The literature (through the analysis of toxicity of the anion and the cation separately) suggests that [C2mim][OAc] is a relatively safe choice for industrial applications. However, because the IL should be considered as a compound, with unique properties arising from the interactions between the ions, comprehensive toxicity information for this particular IL is still required. To decide, prima facie, if this IL is toxic or not, evaluation of its influence on human health and ecotoxicity is needed prior to its large scale utilization. We chose in this mini-review to focus on toxicity surrounding this IL and evaluate what is known and what is not. Here with all the information in hand, we hope that the urgent need for [C2mim][OAc] toxicological assessment before it can be used in numerous technologies is highlighted. In the near future, we expect that the assessment of toxicity and environmental fate and impact can be integrated directly into any research into the industrial utilization of this IL and any others contemplated for industrial application.


Assuntos
Segurança Química/métodos , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Animais , Ecotoxicologia , Humanos , Tecnologia , Testes de Toxicidade/métodos
19.
ACS Med Chem Lett ; 8(5): 498-503, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28523100

RESUMO

Tuning the bioavailability of lidocaine was explored by its incorporation into the ionic liquid lidocainium docusate ([Lid][Doc]) and the deep eutectic Lidocaine·Ibuprofen (Lid·Ibu) and comparing the transdermal absorption of these with the crystalline salt lidocainium chloride ([Lid]Cl). Each form of lidocaine was dissolved in a vehicle cream and topically applied to Sprague-Dawley rats. The concentrations of the active pharmaceutical ingredients (APIs) in blood plasma were monitored over time as an indication of systemic absorption. The concentration of lidocaine in plasma varied between applied API-based creams, with faster and higher systemic absorption of the hydrogen bonded deep eutectic Lid·Ibu than the absorption of the salts [Lid]Cl or [Lid][Doc]. Interestingly, a differential transdermal absorption was observed between lidocaine and ibuprofen when Lid·Ibu was applied, possibly indicating different interactions with the tissue components.

20.
ACS Omega ; 2(7): 3483-3493, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457670

RESUMO

Six ionic liquid (IL)-forming ions (choline, tetrabutylphosphonium, tetrabutylammonium, and trimethylhexadecylammonium cations, and chloride and docusate anions) were paired with acyclovir as the counterion to form four low melting solid salts and two waxes; five of these compounds could be classified as ILs. All of the newly synthesized acyclovir ILs exhibited increased aqueous solubilities by at least 2 orders of magnitude when compared to that of neutral acyclovir. For three of the prepared compounds, the solubilities in simulated body fluids (phosphate-buffered saline, simulated gastric, and simulated intestinal fluids) were also greatly enhanced when compared to that of neutral acyclovir. Acyclovir in its anionic form was more water- or buffer-soluble than acyclovir in its cationic form, though this might be the effect of the particular ions, indicating that the solubilities can be finely tuned by proper choice of the cationic or anionic form of acyclovir and the counterion paired with it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA