Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065414

RESUMO

Biological nitrogen fixation in legume plants depends on the diversity of rhizobia present in the soil. Rhizobial strains exhibit specificity towards host plants and vary in their capacity to fix nitrogen. The increasing interest in rhizobia diversity has prompted studies of their phylogenetic relations. Molecular identification of Rhizobium is quite complex, requiring multiple gene markers to be analysed to distinguish strains at the species level or to predict their host plant. In this research, 50 rhizobia isolates were obtained from the root nodules of five different Pisum sativum L. genotypes ("Bagoo", "Respect", "Astronaute", "Lina DS", and "Egle DS"). All genotypes were growing in the same field, where ecological farming practices were applied, and no commercial rhizobia inoculants were used. The influence of rhizobial isolates on pea root nodulation and dry biomass accumulation was determined. 16S rRNA gene, two housekeeping genes recA and atpD, and symbiotic gene nodC were analysed to characterize rhizobia population. The phylogenetic analysis of 16S rRNA gene sequences showed that 46 isolates were linked to Rhizobium leguminosarum; species complex 1 isolate was identified as Rhizobium nepotum, and the remaining 3 isolates belonged to Rahnella spp., Paenarthrobacter spp., and Peribacillus spp. genera. RecA and atpD gene analysis showed that the 46 isolates identified as R. leguminosarum clustered into three genospecies groups (B), (E) and (K). Isolates that had the highest influence on plant dry biomass accumulation clustered into the (B) group. NodC gene phylogenetic analysis clustered 46 R. leguminosarum isolates into 10 groups, and all isolates were assigned to the R. leguminosarum sv. viciae.

2.
Plants (Basel) ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592825

RESUMO

The global escalation in cereal production, essential to meet growing population demands, simultaneously augments the generation of cereal crop residues, estimated annually at approximately 3107 × 106 Mg/year. Among different crop residue management approaches, returning them to the soil can be essential for various ecological benefits, including nutrient recycling and soil carbon sequestration. However, the recalcitrant characteristics of cereal crop residues pose significant challenges in their management, particularly in the decomposition rate. Therefore, in this review, we aim to summarize the influence of different agricultural practices on enhancing soil microbial decomposer communities, thereby effectively managing cereal crop residues. Moreover, this manuscript provides indirect estimates of cereal crop residue production in Northern Europe and Lithuania, and highlights the diverse roles of lignocellulolytic microorganisms in the decomposition process, with a particular focus on enzymatic activities. This review bridges the knowledge gap and indicates future research directions concerning the influence of agricultural practices on cereal crop residue-associated microbial consortia.

3.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840316

RESUMO

The establishment of the harmful pathogen Fusarium graminearum in different agroecosystems may strongly depend on the ability of the soils to suppress its development and survival. This study aimed to evaluate the influence of different soil tillage systems (i.e., conventional tillage, reduced tillage and no-tillage) on soil fungistasis against F. graminearum. Soil samples were collected three times during the plant growing season in 2016 and 2017 from a long-term, 20-year soil tillage experiment. The F. graminearum in the soil samples was quantified by real-time qPCR. The soil fungistasis was evaluated by the reduction in the radial growth of F. graminearum in an in vitro assay. The antagonistic activity of the soil bacteria was tested using the dual culture method. The F. graminearum DNA contents in the soils were negatively correlated with soil fungistasis (r = -0.649 *). F. graminearum growth on the unfumigated soil was reduced by 70-87% compared to the chloroform fumigated soil. After the plant vegetation renewal, the soil fungistasis intensity was higher in the conventionally tilled fields than in the no-tillage. However, no significant differences were obtained among the tillage treatments at the mid-plant growth stage and after harvesting. 23 out of 104 bacteria isolated from the soil had a moderate effect, and only 1 had a strong inhibitory effect on the growth of F. graminearum. This bacterium was assigned 100% similarity to the Bacillus amyloliquefaciens Hy7 strain (gene bank no: JN382250) according to the sequence of the 16S ribosome subunit coding gene. The results of our study suggest that the presence of F. graminearum in soil is suppressed by soil fungistasis; however, the role of tillage is influenced by other factors, such as soil biological activity, type and quantity of plant residues and environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA