Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 488: 142-148, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27821335

RESUMO

Effective adsorption of pharmaceuticals and then degradation of them in the regeneration process are attractive for their complete removal from water or wastewater. The adsorption of diclofenac sodium (DS) on the prepared carbon nanotubes-polytetrafluorethylene (CNTs-PTFE) anode was enhanced in the presence of applied voltage. Compared with open circuit adsorption, the initial adsorption rate and adsorbed amount of DS in static adsorption experiments increased 2.1 and 1.2 times, respectively. After adsorption, the CNTs-PTFE anode was changed to cathode to in-situ degrade the adsorbed DS, and all DS was degraded after 10min using the electro-peroxone treatment. The mineralization efficiency increased with increasing ozone concentrations and current intensity, and complete mineralization of DS was achieved at 100mA and 27mg/L O3 after 1h treatment. The regenerated CNTs-PTFE electrode kept stable adsorption capacity for DS in five adsorption-degradation cycles. This CNTs-PTFE electrode has a promising application for the removal of pharmaceuticals from water or wastewater via the electrosorption and subsequent oxidative degradation, and the electro-peroxone process is an effective method to regenerate the spent electrode and mineralize the adsorbed pollutants.

2.
J Hazard Mater ; 305: 156-163, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26685062

RESUMO

Ball milling was used to prepare two ultrafine magnetic biochar/Fe3O4 and activated carbon (AC)/Fe3O4 hybrid materials targeted for use in pharmaceutical removal by adsorption and mechanochemical degradation of pharmaceutical compounds. Both hybrid adsorbents prepared after 2h milling exhibited high removal of carbamazepine (CBZ), and were easily separated magnetically. These adsorbents exhibited fast adsorption of CBZ and tetracycline (TC) in the initial 1h. The biochar/Fe3O4 had a maximum adsorption capacity of 62.7mg/g for CBZ and 94.2mg/g for TC, while values obtained for AC/Fe3O4 were 135.1mg/g for CBZ and 45.3mg/g for TC respectively when data were fitted using the Langmuir expression. Solution pH values slightly affected the sorption of TC on the adsorbents, while CBZ sorption was almost pH-independent. The spent adsorbents with adsorbed CBZ and TC were milled to degrade the adsorbed pollutants. The adsorbed TC itself was over 97% degraded after 3h of milling, while about half of adsorbed CBZ were remained. The addition of quartz sand was found to improve the mechanochemical degradation of CBZ on biochar/Fe3O4, and its degradation percent was up to 98.4% at the dose of 0.3g quarts sand/g adsorbent. This research provided an easy method to prepare ultrafine magnetic adsorbents for the effective removal of typical pharmaceuticals from water or wastewater and degrade them using ball milling.


Assuntos
Carbamazepina/química , Carbono/química , Carvão Vegetal/química , Óxido Ferroso-Férrico/química , Tetraciclina/química , Poluentes Químicos da Água/química , Adsorção , Carvão Mineral , Cocos , Juglans , Fenômenos Magnéticos , Nozes , Pinus , Purificação da Água/métodos
3.
Environ Sci Technol ; 49(15): 9264-72, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26161585

RESUMO

The removal of aqueous micropollutants remains challenging because of the interference of natural water constituents that are typically 3-9 orders of magnitude more concentrated. Cyclodextrins, which feature molecular recognition and are widely applied in separation and catalysis, are promising materials in the development of pollutant treatment technologies. Here, we described the facile integration of cyclodextrin polymer (CDP) adsorption and KMnO4 oxidation for recyclable capture and destruction of aqueous micropollutants (i.e., antibiotics and TBBPA). CDP exhibited adsorption efficiencies of 0.81-88% and 0.81-94% toward 14 pollutants at 50.0 ng/L and 50.0 µg/L, respectively, at a solid-to-liquid ratio of 1:1250. The presence of simulated or natural water constituents (e.g., Mg(2+), Ca(2+), DOC, and a combination thereof) did not decrease the adsorption potential of CDP toward these pollutants because the pollutants, based on molecular specificity, were entrapped in the CD cavity. Subsequent KMnO4 oxidation completely degraded the retained pollutants, demonstrating that the pollutants could be broken down in the cavity. Pristine CDP was rearranged into the structurally loose composites that featured a porous CDP architecture with uniform embedment of δ-MnO2 nanoparticles and different adsorption efficiencies. δ-MnO2 loading was a linear function of the number of times the integrated procedure was repeated, underlying the accurate control of CDP recycling. Thus, this approach may represent a new method for the removal of aqueous micropollutants.


Assuntos
Celulose/química , Ciclodextrinas/química , Permanganato de Potássio/química , Reciclagem , Poluentes Químicos da Água/análise , Adsorção , Meio Ambiente , Oxirredução , Bifenil Polibromatos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...