Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(12): 16090-16096, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926835

RESUMO

Hydrogel actuators showing shape morphing in response to external stimuli are of significant interest for their applications in soft robots, artificial muscles, etc. However, there is still a lack of hydrogel actuators with adjustable stimulus responsiveness for on-demand driving. In this study, an organohydrogel actuator was prepared by a two-step interpenetrating method, resulting in the coexistence of poly(N-isopropylacrylamide-co-4-(2-sulfoethyl)-1-(4-vinylbenzyl) pyridinium betaine) (p(NIPAM-SVBP)) hydrophilic networks and poly(lauryl methacrylate) (pLMA) hydrophobic networks with gradient distribution. In the initial state, the organohydrogel actuator can be driven globally under thermal stimulation. Owing to the unique alkali-chromic performance of SVBP, the organohydrogel actuator can be endowed with photothermal properties and actuate locally under the stimulus of NIR light. More importantly, the organohydrogel will return to the original colorless state after being treated with acid solution. Our work provides a new insight into designing and fabricating novel actuators with adjustable stimulus responsiveness for on-demand morphing.

2.
ACS Appl Mater Interfaces ; 15(5): 7405-7413, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706270

RESUMO

As one of the most promising candidates for dynamic information storage, intelligent gels with tunable optical properties under external stimuli have received great attention. The implementation of transparency variation for information display is a favorable and versatile strategy but still faces the challenge of on-demand encryption-decryption. Herein, an optical tunable organohydrogel is prepared, which has interpenetrating heterogeneous networks consisting of hydrophilic poly(N,N-dimethylacrylamide) (PDMA) and hydrophobic polyoctadecyl methacrylate (PSMA). The long alkane side chains of PSMA endow the organohydrogel with the capacity of crystallization-melting transitions under the stimulus of heat, accompanied by transparent-opaque switching. In addition, the variations of transparency can also be achieved by water-induced hydrophobic association and microphase separation, resulting from the unique heterogeneous networks of the organohydrogel. Based on the abovementioned two aggregated structures, various pieces of information can be loaded on the organohydrogel by light writing or water printing with the assistance of masks. The coded information can be encrypted and decrypted by solvent replacement and temperature switching. This elaborately designed organohydrogel can act as an effective communication platform with an improved security level and ignite the sparks of developing novel information storage materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA