Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 986-9, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25007614

RESUMO

Nano-silver colloid was synthesized by using microwave method on the mixtures of sodium citrate solution and silver nitrate solution. The method has advantages of fast heating speed, uniform temperature distribution and easily controlled reaction conditions. The sizes and size distributions of the silver particles were characterized by means of quasi-elastic laser scattering (QLS). The average particles size was (53.27 +/- 2.65) nm and the size of the particles was mainly distributed around 56 nm. Surface-enhanced Raman spectra of the degradation products from goat horn were obtained with silver colloid as active substrate. It was observed that the Raman signal of SERS was enhanced significantly compared with that of regular Raman spectrum, especially at the Raman bands of 659, 830, 850, 929, 999, 1 028, 1 280, 1 439 and 1 599 cm(-1) which reflect the biochemical components in degradation products. The characteristic Raman bands of degradation products from goat horn were preliminary assigned. The assignments showed that the main constituents of the degradation products from goat horn were amino acids and polypeptides. It was for the first time that Surface-enhanced Raman spectroscopy was used to detect trace degradation products from the horns. Raman signal enhancement can be obtained with high sensitivity for the trace concentrations as low as ppm level. It is concluded that surface-enhanced Raman spectroscopy can provide a fast, direct and precise detecting method for the detection of trace degradation solution from horns.


Assuntos
Cabras , Cornos/química , Análise Espectral Raman , Animais , Coloides , Nanopartículas Metálicas , Micro-Ondas , Tamanho da Partícula , Prata
2.
Mater Sci Eng C Mater Biol Appl ; 33(8): 5036-43, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094221

RESUMO

The microstructure and mechanical properties of horns derived from three domestic bovines (buffalo, cattle and sheep) were examined. The effects of water content, sampling position and orientation of three bovid horns on mechanical properties were systematically investigated by uniaxial tension and micron indentation tests. Meanwhile, the material composition and metal element contents were determined by Raman spectroscopy and elemental analysis respectively, and the microstructures of the horns were measured by scanning electron microscopy (SEM). Results show that the mechanical properties of horns have negative correlation with water contents and depend on sampling position and orientation. The spatial variations of the mechanical properties in horns are attributed to the different keratinization degrees in the proximal, middle and distal parts. And the mechanical properties of horns in the longitudinal direction are better than those in transverse. Among the three kinds of horns, the mechanical properties of buffalo horn are the best, followed by cattle horn, and those in sheep horn are the worst. This is due to the differences in material composition, metal element, and the microstructures of the horns. But the mechanical properties of buffalo horns are not dependent on the source of the buffalo. Therefore, regular engineered buffalo keratinous materials with standard mechanical properties can be obtained from different buffalo horns by using proper preparation methods.


Assuntos
Cornos/química , Animais , Búfalos , Bovinos , Força Compressiva , Módulo de Elasticidade , Dureza , Cornos/metabolismo , Queratinas/metabolismo , Microscopia Eletrônica de Varredura , Ovinos , Análise Espectral Raman , Resistência à Tração , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...