Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 263: 128250, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297195

RESUMO

Copper(II) phthalocyanine (CuPc) and non-peripheral octamethyl-substituted copper(II) phthalocyanine (N-CuMe2Pc) were combined with reduced graphene oxide (rGO) via a precipitation method to form CuPc/rGO and N-CuMe2Pc/rGO nanocomposites, respectively. CuPc nanorods are distributed on rGO, and N-CuMe2Pc exists as nanorods and nanoparticles on rGO. The Cr(VI) removal ratio of N-CuMe2Pc/rGO exposed in simulated sunlight is 99.0% with a fast photocatalytic reaction rate of 0.0320 min-1, which is approximately 1.5 times faster than that of CuPc/rGO (0.0215 min-1) and far surpasses that of pristine phthalocyanine and rGO. As an electron acceptor, rGO can suppress the recombination of photo-induced electron-hole pairs and also can provide a large surface area for Cr(VI) removal, both of which are beneficial to the reducing capacity of the nanocomposites. The higher removal efficiency of N-CuMe2Pc/rGO compared with that of CuPc/rGO is attributed to the higher specific surface area, higher light harvesting, higher conductivity and more negative lowest unoccupied molecular orbital level of N-CuMe2Pc/rGO. The N-CuMe2Pc/rGO nanocomposite shows excellent photochemical recyclability which is essential for application in wastewater treatment.


Assuntos
Grafite , Nanocompostos , Poluentes Químicos da Água , Catálise , Cromo , Indóis , Compostos Organometálicos
2.
J Chem Phys ; 152(15): 154702, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321262

RESUMO

Graphene-based composites are widely used in the photocatalytic treatment of heavy-metal ions or dyes. In this study, we developed a facile in situ precipitation method for preparing a non-peripheral octamethyl-substituted cobalt(II)phthalocyanine (N-CoMe2Pc)/reduced graphene oxide (rGO) nanocomposite as an efficient photocatalyst. The physical and chemical properties of the nanocomposite were investigated by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible, ultraviolet photoelectron, Fourier-transform infrared, Raman, and x-ray photoelectron spectroscopies. The results showed that the N-CoMe2Pc nanoparticles were immobilized on rGO nanosheets via π-π stacking interactions. The photocatalytic activity of the nanocomposite in the reduction of hexavalent chromium [Cr(VI), 10 mg/l] under visible-light irradiation was investigated. The Cr(VI) removal ratio reached 99.5% with a high photocatalytic rate of 0.0359 min-1, which is ten times faster than that achieved with pristine N-CoMe2Pc. The high removal efficiency is attributed to the following: (1) the number of active sites provided by nanodot-like N-CoMe2Pc is larger than that provided by bulk Pc, which can increase the production of photogenerated carriers, and (2) enhanced charge carrier separation resulting from intimate contact between N-CoMe2Pc nanodots and GO nanosheets. The N-CoMe2Pc/rGO also showed excellent stability and reusability. The Cr(VI) removal efficiency was 93.2% after eight photocatalytic test cycles.

3.
Nanoscale ; 12(3): 1484-1494, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31909402

RESUMO

Artificial limbs have been widely investigated in the past several decades, and multifuncional bionic limbs have already been constructed. However, due the lack of nociceptive systems, amputees still cannot feel ubiquitous noxious stimuli through bionic limbs. The construction of artificial nociceptors can bring bionic limbs closer to real flesh and bone. In daily life, UV irradiation is an invisible potential noxious stimulus to human skin and eyes. Furthermore, it is well known that the synthetic polymers widely used in bionic limbs can be degraded by UV radiation, accelerating their aging. Based on the above, UV damage-sensing nociceptors could be a feasible strategy to solve these existing problems. Here, azobenzene-functionalized gold nanoparticles (Azo-Au NPs) are embedded in insulating poly(methyl methacrylate) (PMMA) to construct a two-terminal memristor. With UV irradiation as a light damage medium, major nociceptive behaviors such as "threshold", "relaxation" and "sensitization" are successfully emulated, demonstrating its potential application as a nociceptive system.


Assuntos
Membros Artificiais , Ouro/química , Membranas Artificiais , Nanopartículas Metálicas/química , Nociceptividade , Raios Ultravioleta , Biônica , Humanos
4.
R Soc Open Sci ; 5(8): 180617, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225059

RESUMO

Boron subphthalocyanine (SubPc) has special physical and chemical properties, originating from its non-centrosymmetric, near-planar taper structure and large conjugated system; it can act as an alternative to the small molecule hole-transporting material 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene in perovskite solar cells (PSCs). To achieve a higher solubility in common organic solvents and a more suitable highest occupied molecular orbital energy level that aligns with the valence band of the perovskite material, a SubPc molecule with a hexamethyl substitution at its peripheral position (Me6-SubPc) was successfully designed and synthesized in a one-step method. Completely solution processed PSCs were fabricated with only a small hysteresis, a power conversion efficiency of 6.96% and Voc of 0.986 V.

5.
ChemSusChem ; 11(17): 3000-3006, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-29981253

RESUMO

SnO2 was recently employed as an efficient electron-transport layer (ETL) in perovskite solar cells (PSCs) and high power conversion efficiencies (PCEs) have been reported. However, it is still challenging to fabricate SnO2 thin films through facile solution-based synthesis at low temperature (<150 °C) to be compatible with the large scale module fabrication, especially for flexible devices. Here, we report a low temperature solution-based method for preparation of SnO2 nanoparticles. Ultrasonic-assisted wet chemistry synthesis of ultrafine SnO2 nanocrystals with particle size ranging from 2 to 5 nm was achieved by employing a SnCl4 ⋅5 H2 O solution in a mixed ethanol-water solution and with no annealing step. The crystallinity and microstructure of the SnO2 nanoparticles were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), as well as selected area electron diffraction (SAED) analysis. The added water in ethanol and increased pH values were demonstrated as two key factors to successful fabrication of highly crystallized samples with high reproducability. An efficiency of 16.56 % was achieved for PSCs based on SnO2 nanoparticles synthesized by ultrasonic-assisted wet chemistry.

6.
Adv Mater ; 30(28): e1800327, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29782667

RESUMO

The in-depth understanding of ions' generation and movement inside all-inorganic perovskite quantum dots (CsPbBr3 QDs), which may lead to a paradigm to break through the conventional von Neumann bottleneck, is strictly limited. Here, it is shown that formation and annihilation of metal conductive filaments and Br- ion vacancy filaments driven by an external electric field and light irradiation can lead to pronounced resistive-switching effects. Verified by field-emission scanning electron microscopy as well as energy-dispersive X-ray spectroscopy analysis, the resistive switching behavior of CsPbBr3 QD-based photonic resistive random-access memory (RRAM) is initiated by the electrochemical metallization and valance change. By coupling CsPbBr3 QD-based RRAM with a p-channel transistor, the novel application of an RRAM-gate field-effect transistor presenting analogous functions of flash memory is further demonstrated. These results may accelerate the technological deployment of all-inorganic perovskite QD-based photonic resistive memory for successful logic application.

7.
Small ; 14(28): e1800288, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806246

RESUMO

Inspired by the highly parallel processing power and low energy consumption of the biological nervous system, the development of a neuromorphic computing paradigm to mimic brain-like behaviors with electronic components based artificial synapses may play key roles to eliminate the von Neumann bottleneck. Random resistive access memory (RRAM) is suitable for artificial synapse due to its tunable bidirectional switching behavior. In this work, a biological spiking synapse is developed with solution processed Au@Ag core-shell nanoparticle (NP)-based RRAM. The device shows highly controllable bistable resistive switching behavior due to the favorable Ag ions migration and filament formation in the composite film, and the good charge trapping and transport property of Au@Ag NPs. Moreover, comprehensive synaptic functions of biosynapse including paired-pulse depression, paired-pulse facilitation, post-tetanic potentiation, spike-time-dependent plasticity, and the transformation from short-term plasticity to long-term plasticity are emulated. This work demonstrates that the solution processed bimetal core-shell nanoparticle-based biological spiking synapse provides great potential for the further creation of a neuromorphic computing system.


Assuntos
Potenciais de Ação/fisiologia , Metais/química , Nanocompostos/química , Nanopartículas/química , Sinapses/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Soluções , Compostos de Estanho/química
8.
RSC Adv ; 8(44): 25031-25039, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542151

RESUMO

Three small molecules SBF-1DPPDCV, SBF-2DPPDCV and SBF-4DPPDCV consisting of a spirobifluorene (SBF) unit as the core and one, two, and four diketopyrrolopyrrole dicyanovinyl (DPPDCV) units as the arms have been designed and synthesized for solution-processed bulk-heterojunction (BHJ) solar cells. The UV-Vis absorption and cyclic voltammetry measurement of these compounds showed that all these compounds have an intense absorption band over 300-750 nm with a LUMO energy level at around -3.87 eV. When pairing with PTB7-Th as the donor, devices fabricated based on PTB7-Th : SBF-4DPPDCV blends showed a decent PCE of 3.85%, which is the highest power conversion efficiency (PCE) amongst the three DPP acceptor fabricated devices without extra treatment. Devices with SBF-1DPPDCV and SBF-2DPPDCV acceptors showed lower PCEs of 0.26% for SBF-1DPPDCV and 0.98% for SBF-2DPPDCV respectively. The three dimensional (3D) structure of SBF-4DPPDCV facilitates the formation of a 3D charge-transport network and thus enables a rational electron-transport ability (1.04 × 10-4 cm2 V-1 s-1), which further leads to a higher J sc (10.71 mA cm-2). These findings suggest that multi-arm acceptors present better performance than one-arm or two-arm molecules for organic solar cells.

9.
Chem Asian J ; 12(16): 2052-2056, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28731286

RESUMO

The incorporation of fluorine atoms in organic semiconducting materials has attracted much attention recently due to its unique function to manipulate the molecular packing, film morphology and molecular energy levels. In this work, two perylenediimide (PDI) derivatives FPDI-CDTph and FPDI-CDTph2F were designed and synthesized to investigate the impact of fluorination on non-fullerene acceptors. Both FPDI-CDTph and FPDI-CDTph2F exhibited strong and broad absorption profiles, suitable lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, and good electron transport ability. Compared with FPDI-CDTph, the fluorinated acceptor (FPDI-CDTph2F) afforded an optimal bulk heterojunction morphology with an interconnected and nanoscale phase separated structure that allowed more efficient exciton dissociation and balanced charge transport. Consequently, organic solar cells based on FPDI-CDTph2F showed a much higher power conversion efficiency (PCE) of 6.03 % than that of FPDI-CDTph based devices (4.10 %) without any post-fabrication treatment.

10.
ACS Appl Mater Interfaces ; 8(29): 18991-7, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27377991

RESUMO

We demonstrate doctor blading technique to fabricate high performance transistors made up of printed small molecular materials. In this regard, we synthesize a new soluble phthalocyanine, tetra-n-butyl peripheral substituted copper(II) phthalocaynine (CuBuPc), that can easily undergo gel formation upon ultrasonic irradiation, leading to the formation of three-dimensional (3D) network composed of one-dimensional (1D) nanofibers structure. Finally, taking the advantage of thixotropic nature of the CuBuPc organogel, we use the doctor blade processing technique that limits the material wastage for the fabrication of transistor devices. Due to the ultrasound induced stronger π-π interaction, the transistor fabricated by doctor blading based on CuBuPc organogel exhibits significant increase in charge carrier mobility in comparison with other solution process techniques, thus paving a way for a simple and economically viable preparation of electronic circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...