Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(32): 7946-7958, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39041314

RESUMO

Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in clinical practice have many limitations, thereby necessitating the rapid development of biomaterials. Among them, decellularized biomaterials have been particularly prominent, with numerous breakthroughs in research progress and translational applications. Although many studies show that decellularized cartilage biomaterials promote tissue regeneration, any differences in cellular morphology, dynamics, and functionality among various biomaterials upon comparison have not been reported. In this study, we prepared cartilage-derived extracellular matrix (cdECM) biomaterials with different bioactive contents and various physical properties to compare their effects on the morphology, dynamics and functionality of chondrocytes. This cellular multimodal analysis of the characteristics of cdECM biomaterials provided a theoretical basis for understanding the interactions between biomaterials and cells, thus laying an experimental foundation for the translation and application of decellularized cartilage biomaterials in the treatment of cartilage defects.


Assuntos
Materiais Biocompatíveis , Condrócitos , Matriz Extracelular , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Condrócitos/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cartilagem Articular , Células Cultivadas , Humanos , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Alicerces Teciduais/química
2.
MedComm (2020) ; 4(6): e399, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020712

RESUMO

Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.

3.
J Mater Chem B ; 11(18): 3994-4004, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165902

RESUMO

Cutaneous wounds remain a major clinical challenge that urgently requires the development of advanced and functional wound dressings. During the wound healing process, macrophages are well known to exhibit temporal dynamics with a pro-inflammatory phenotype at early stages and a pro-healing phenotype at late stages, thus playing an important role in regulating inflammatory responses and tissue regeneration. Meanwhile, disrupted temporal dynamics of macrophages caused by poor wound local conditions and deficiency of macrophage function always impair the wound-healing progression. Here in this work, we proposed a novel controllable strategy to construct a spatiotemporal dynamical immune-microenvironment for the treatment of cutaneous wounds. To achieve this goal, a concentric decellularized dermal hydrogel was constructed with the combination of type 1 and type 2 macrophage-associated cytokine complexes in the sheath portion and core portion, respectively. The in vitro degradation experiment exhibited a sequential cascade release of pro-inflammatory cytokines and pro-healing cytokines. The enhanced cell biocompatibility and tube formation of HUVECs were confirmed. A full-thickness skin defect model of rats was developed to analyze the effect of the spatiotemporal dynamical bioactive hydrogels on wound healing. Remarkable angiogenesis, rapid wound restoration, moderate extracellular matrix deposition and obvious skin appendage neogenesis were identified at different time points after treatment with the macrophage cytokine-based decellularized hydrogels. Consequently, the concentric decellularized hydrogels with spatiotemporal dynamics of immune cytokines have considerable potential for cell-free therapy for wound healing.


Assuntos
Hidrogéis , Pele , Ratos , Animais , Hidrogéis/farmacologia , Pele/lesões , Macrófagos , Cicatrização , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA