Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653356

RESUMO

The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component ß-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.


Assuntos
Sinalização do Cálcio , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Fibrose , Técnicas de Introdução de Genes , Proteína Wnt4 , Animais , Camundongos , Transição Epitelial-Mesenquimal/genética , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Sinalização do Cálcio/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Via de Sinalização Wnt , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Rim/patologia , Rim/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , beta Catenina/metabolismo , beta Catenina/genética
2.
Nat Commun ; 13(1): 6255, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271049

RESUMO

Diabetes is a multifactorial disorder characterized by loss or dysfunction of pancreatic ß-cells. ß-cells are heterogeneous, exhibiting different glucose sensing, insulin secretion and gene expression. They communicate with other endocrine cell types via paracrine signals and between ß-cells via gap junctions. Here, we identify the importance of signaling between ß-cells via the extracellular signal WNT4. We show heterogeneity in Wnt4 expression, most strikingly in the postnatal maturation period, Wnt4-positive cells, being more mature while Wnt4-negative cells are more proliferative. Knock-out in adult ß-cells shows that WNT4 controls the activation of calcium signaling in response to a glucose challenge, as well as metabolic pathways converging to lower ATP/ADP ratios, thereby reducing insulin secretion. These results reveal that paracrine signaling between ß-cells is important in addition to gap junctions in controling insulin secretion. Together with previous reports of WNT4 up-regulation in obesity our observations suggest an adaptive insulin response coordinating ß-cells.


Assuntos
Sinalização do Cálcio , Insulinas , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo , Insulinas/metabolismo , Difosfato de Adenosina/metabolismo
3.
Sci Rep ; 8(1): 16618, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413738

RESUMO

The kidney is a complex organ that is comprised of thousands of nephrons developing through reciprocal inductive interactions between metanephric mesenchyme (MM) and ureteric bud (UB). The MM undergoes mesenchymal to epithelial transition (MET) in response to the signaling from the UB. The secreted protein Wnt4, one of the Wnt family members, is critical for nephrogenesis as mouse Wnt4-/- mutants fail to form pretubular aggregates (PTA) and therefore lack functional nephrons. Here, we generated mouse embryonic stem cell (mESC) line lacking Wnt4 by applying the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9). We describe here, differentiation of the wild type and Wnt4 knockout mESCs into kidney progenitors, and such cells induced to undergo nephrogenesis by the mouse E11.5 UB mediated induction. The wild type three-dimensional (3D) self-organized organoids depict appropriately segmented nephron structures, while the Wnt4-deficient organoids fail to undergo the MET, as is the case in the phenotype of the Wnt4 knockout mouse model in vivo. In summary, we have established a platform that combine CRISPR/Cas9 and kidney organoid technologies to model kidney development in vitro and confirmed that mutant organoids are able to present similar actions as in the in vivo studies.


Assuntos
Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Mesoderma/citologia , Néfrons/citologia , Organogênese , Organoides/citologia , Proteína Wnt4/fisiologia , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Néfrons/metabolismo , Organoides/metabolismo , Transdução de Sinais , Proteína Wnt4/antagonistas & inibidores
4.
Sci Rep ; 8(1): 14133, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237523

RESUMO

Kidney proximal tubular cells (PTCs) are highly specialized for ultrafiltrate reabsorption and serve as paradigm of apical epithelial differentiation. Vps34/PI3-kinase type III (PI3KC3) regulates endosomal dynamics, macroautophagy and lysosomal function. However, its in vivo role in PTCs has not been evaluated. Conditional deletion of Vps34/PI3KC3 in PTCs by Pax8-Cre resulted in early (P7) PTC dysfunction, manifested by Fanconi-like syndrome, followed by kidney failure (P14) and death. By confocal microscopy, Vps34∆/∆ PTCs showed preserved apico-basal specification (brush border, NHERF-1 versus Na+/K+-ATPase, ankyrin-G) but basal redistribution of late-endosomes/lysosomes (LAMP-1) and mis-localization to lysosomes of apical recycling endocytic receptors (megalin, cubilin) and apical non-recycling solute carriers (NaPi-IIa, SGLT-2). Defective endocytosis was confirmed by Texas-red-ovalbumin tracing and reduced albumin content. Disruption of Rab-11 and perinuclear galectin-3 compartments suggested mechanistic clues for defective receptor recycling and apical biosynthetic trafficking. p62-dependent autophagy was triggered yet abortive (p62 co-localization with LC3 but not LAMP-1) and PTCs became vacuolated. Impaired lysosomal positioning and blocked autophagy are known causes of cell stress. Thus, early trafficking defects show that Vps34 is a key in vivo component of molecular machineries governing apical vesicular trafficking, thus absorptive function in PTCs. Functional defects underline the essential role of Vps34 for PTC homeostasis and kidney survival.


Assuntos
Autofagia/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Hipersensibilidade Tardia/genética , Síndromes de Imunodeficiência/genética , Túbulos Renais Proximais/metabolismo , Pancitopenia/genética , Insuficiência Renal/genética , Neoplasias Cutâneas/genética , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Hipersensibilidade Tardia/metabolismo , Síndromes de Imunodeficiência/metabolismo , Camundongos , Camundongos Knockout , Pancitopenia/metabolismo , Transporte Proteico , Insuficiência Renal/metabolismo , Neoplasias Cutâneas/metabolismo
5.
Dis Model Mech ; 10(12): 1503-1515, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29084770

RESUMO

Three-dimensional (3D) organoids provide a new way to model various diseases, including cancer. We made use of recently developed kidney-organ-primordia tissue-engineering technologies to create novel renal organoids for cancer gene discovery. We then tested whether our novel assays can be used to examine kidney cancer development. First, we identified the transcriptomic profiles of quiescent embryonic mouse metanephric mesenchyme (MM) and of MM in which the nephrogenesis program had been induced ex vivo The transcriptome profiles were then compared to the profiles of tumor biopsies from renal cell carcinoma (RCC) patients, and control samples from the same kidneys. Certain signature genes were identified that correlated in the developmentally induced MM and RCC, including components of the caveolar-mediated endocytosis signaling pathway. An efficient siRNA-mediated knockdown (KD) of Bnip3, Gsn, Lgals3, Pax8, Cav1, Egfr or Itgb2 gene expression was achieved in mouse RCC (Renca) cells. The live-cell imaging analysis revealed inhibition of cell migration and cell viability in the gene-KD Renca cells in comparison to Renca controls. Upon siRNA treatment, the transwell invasion capacity of Renca cells was also inhibited. Finally, we mixed E11.5 MM with yellow fluorescent protein (YFP)-expressing Renca cells to establish chimera organoids. Strikingly, we found that the Bnip3-, Cav1- and Gsn-KD Renca-YFP+ cells as a chimera with the MM in 3D organoid rescued, in part, the RCC-mediated inhibition of the nephrogenesis program during epithelial tubules formation. Altogether, our research indicates that comparing renal ontogenesis control genes to the genes involved in kidney cancer may provide new growth-associated gene screens and that 3D RCC-MM chimera organoids can serve as a novel model with which to investigate the behavioral roles of cancer cells within the context of emergent complex tissue structures.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Renais/patologia , Quimera/metabolismo , Estudos de Associação Genética , Neoplasias Renais/patologia , Rim/patologia , Células-Tronco/patologia , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Cocultura , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Neoplasias Renais/genética , Camundongos , Invasividade Neoplásica , Néfrons/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção , Ensaio Tumoral de Célula-Tronco
6.
Development ; 144(6): 1113-1117, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28219945

RESUMO

Tissue, organ and organoid cultures provide suitable models for developmental studies, but our understanding of how the organs are assembled at the single-cell level still remains unclear. We describe here a novel fixed z-direction (FiZD) culture setup that permits high-resolution confocal imaging of organoids and embryonic tissues. In a FiZD culture a permeable membrane compresses the tissues onto a glass coverslip and the spacers adjust the thickness, enabling the tissue to grow for up to 12 days. Thus, the kidney rudiment and the organoids can adjust to the limited z-directional space and yet advance the process of kidney morphogenesis, enabling long-term time-lapse and high-resolution confocal imaging. As the data quality achieved was sufficient for computer-assisted cell segmentation and analysis, the method can be used for studying morphogenesis ex vivo at the level of the single constituent cells of a complex mammalian organogenesis model system.


Assuntos
Rim/embriologia , Microscopia Confocal/métodos , Organoides/embriologia , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura de Tecidos/métodos , Animais , Imageamento Tridimensional , Camundongos , Morfogênese
7.
Nat Commun ; 7: 12751, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624192

RESUMO

Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates ß-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling.


Assuntos
Neoplasias das Glândulas Suprarrenais/etiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Via de Sinalização Wnt , Zona Fasciculada/metabolismo , Zona Glomerulosa/metabolismo , Animais , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Fosforilação , Zona Fasciculada/citologia , Zona Glomerulosa/citologia , beta Catenina/metabolismo
8.
Genes Dev ; 30(12): 1389-94, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27313319

RESUMO

Adrenal glands are zonated endocrine organs that are essential in controlling body homeostasis. How zonation is induced and maintained and how renewal of the adrenal cortex is ensured remain a mystery. Here we show that capsular RSPO3 signals to the underlying steroidogenic compartment to induce ß-catenin signaling and imprint glomerulosa cell fate. Deletion of RSPO3 leads to loss of SHH signaling and impaired organ growth. Importantly, Rspo3 function remains essential in adult life to ensure replenishment of lost cells and maintain the properties of the zona glomerulosa. Thus, the adrenal capsule acts as a central signaling center that ensures replacement of damaged cells and is required to maintain zonation throughout life.


Assuntos
Córtex Suprarrenal/fisiologia , Diferenciação Celular/genética , Transdução de Sinais/genética , Trombospondinas/metabolismo , Córtex Suprarrenal/citologia , Animais , Proliferação de Células , Embrião de Mamíferos , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Homeostase/genética , Masculino , Camundongos , Trombospondinas/genética , Zona Glomerulosa/citologia , Zona Glomerulosa/metabolismo , beta Catenina/metabolismo
9.
Hum Mol Genet ; 25(6): 1059-73, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26721931

RESUMO

The Müllerian duct (MD) is the anlage of the oviduct, uterus and upper part of the vagina, the main parts of the female reproductive tract. Several wingless-type mouse mammary tumor virus (MMTV) integration site family member (Wnt) genes, including Wnt4, Wnt5a and Wnt7a, are involved in the development of MD and its derivatives, with Wnt4 particularly critical, since the MD fails to develop in its absence. We use, here, Wnt4(EGFPCre)-based fate mapping to demonstrate that the MD tip cells and the subsequent MD cells are derived from Wnt4+ lineage cells. Moreover, Wnt4 is required for the initiation of MD-forming cell migration. Application of anti-Wnt4 function-blocking antibodies after the initiation of MD elongation indicated that Wnt4 is necessary for the elongation as well, and consistent with this, cell culture wound-healing assays with NIH3T3 cells overexpressing Wnt4 promoted cell migration by comparison with controls. In contrast to the Wnt4 null embryos, some Wnt4(monomeric cherry/monomeric cherry) (Wnt4(mCh/mCh)) hypomorphic mice survived to adulthood and formed MD in ∼45% of cases. Nevertheless, the MD of the Wnt4(mCh/mCh) females had altered cell polarization and basement membrane deposition relative to the controls. Examination of the reproductive tract of the Wnt4(mCh/mCh) females indicated a poorly coiled oviduct, absence of the endometrial glands and an undifferentiated myometrium, and these mice were prone to develop a hydro-uterus. In conclusion, the results suggest that the Wnt4 gene encodes signals that are important for various aspects of female reproductive tract development.


Assuntos
Ductos Paramesonéfricos/metabolismo , Proteína Wnt4/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Movimento Celular/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Ductos Paramesonéfricos/citologia , Células NIH 3T3 , Reprodução , Útero/metabolismo , Proteína Wnt4/genética
10.
Dis Model Mech ; 8(8): 903-17, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26035382

RESUMO

Wilms' tumours, paediatric kidney cancers, are the archetypal example of tumours caused through the disruption of normal development. The genetically best-defined subgroup of Wilms' tumours is the group caused by biallelic loss of the WT1 tumour suppressor gene. Here, we describe a developmental series of mouse models with conditional loss of Wt1 in different stages of nephron development before and after the mesenchymal-to-epithelial transition (MET). We demonstrate that Wt1 is essential for normal development at all kidney developmental stages under study. Comparison of genome-wide expression data from the mutant mouse models with human tumour material of mutant or wild-type WT1 datasets identified the stage of origin of human WT1-mutant tumours, and emphasizes fundamental differences between the two human tumour groups due to different developmental stages of origin.


Assuntos
Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Proteínas WT1/metabolismo , Tumor de Wilms/patologia , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Regulação Neoplásica da Expressão Gênica , Genoma , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Estadiamento de Neoplasias , Néfrons/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Imagem com Lapso de Tempo , Proteínas WT1/genética , Tumor de Wilms/genética
11.
EMBO J ; 34(5): 641-52, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25603931

RESUMO

Ovarian hormones increase breast cancer risk by poorly understood mechanisms. We assess the role of progesterone on global stem cell function by serially transplanting mouse mammary epithelia. Progesterone receptor (PR) deletion severely reduces the regeneration capacity of the mammary epithelium. The PR target, receptor activator of Nf-κB ligand (RANKL), is not required for this function, and the deletion of Wnt4 reduces the mammary regeneration capacity even more than PR ablation. A fluorescent reporter reveals so far undetected perinatal Wnt4 expression that is independent of hormone signaling. Pubertal and adult Wnt4 expression is specific to PR+ luminal cells and requires intact PR signaling. Conditional deletion of Wnt4 reveals that this early, previously unappreciated, Wnt4 expression is functionally important. We provide genetic evidence that canonical Wnt signaling in the myoepithelium required PR and Wnt4, whereas the canonical Wnt signaling activities observed in the embryonic mammary bud and in the stroma around terminal end buds are independent of Wnt4. Thus, progesterone and Wnt4 control stem cell function through a luminal-myoepithelial crosstalk with Wnt4 acting independent of PR perinatally.


Assuntos
Epitélio/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/embriologia , Progesterona/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Proteína Wnt4/metabolismo , Animais , Primers do DNA/genética , Feminino , Deleção de Genes , Técnicas Histológicas , Processamento de Imagem Assistida por Computador , Glândulas Mamárias Animais/fisiologia , Camundongos , Microscopia de Fluorescência , Receptor Cross-Talk/fisiologia , Receptores de Progesterona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Transplante de Células-Tronco
12.
J Am Soc Nephrol ; 25(11): 2459-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24904088

RESUMO

Podocytes are terminally differentiated cells with an elaborate cytoskeleton and are critical components of the glomerular barrier. We identified a bHLH transcription factor, Tcf21, that is highly expressed in developing and mature podocytes. Because conventional Tcf21 knockout mice die in the perinatal period with major cardiopulmonary defects, we generated a conditional Tcf21 knockout mouse to explore the role of this transcription factor in podocytes in vivo. Tcf21 was deleted from podocytes and podocyte progenitors using podocin-cre (podTcf21) and wnt4-cre (wnt4creTcf21) driver strains, respectively. Loss of Tcf21 from capillary-loop stage podocytes (podTcf21) results in simplified glomeruli with a decreased number of endothelial and mesangial cells. By 5 weeks of age, 40% of podTcf21 mice develop massive proteinuria and lesions similar to FSGS. Notably, the remaining 60% of mice do not develop proteinuria even when aged to 8 months. By contrast, earlier deletion of Tcf21 from podocyte precursors (wnt4creTcf21) results in a profound developmental arrest of podocyte differentiation and renal failure in 100% of mice during the perinatal period. Taken together, our results demonstrate a critical role for Tcf21 in the differentiation and maintenance of podocytes. Identification of direct targets of this transcription factor may provide new therapeutic avenues for proteinuric renal disease, including FSGS.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diabetes Mellitus Experimental/fisiopatologia , Glomerulosclerose Segmentar e Focal/fisiopatologia , Podócitos/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Senescência Celular/fisiologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/embriologia , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Óperon Lac , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Podócitos/patologia , Proteinúria/genética , Proteinúria/patologia , Proteinúria/fisiopatologia
13.
FASEB J ; 28(4): 1568-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371124

RESUMO

Wnt4 is a key signal that channels the developmental fate of the indifferent mammalian gonad toward the ovary, but whether Wnt4 has later roles during ovary development remains unknown. To investigate this, we inactivated the Wnt4 gene by crossing Amhr2Cre and doxycycline-inducible Rosa(rtTA)-knock-in Cre mice with mice carrying a floxed Wnt4 allele and used a novel Wnt4(mCherry)-knock-in mouse. In these models, ovarian folliculogenesis was compromised, and female fertility was severely reduced, and Wnt4 deficiency eventually led to premature ovarian failure. These anomalies were associated with cell polarity defects in the follicle. Within the follicle, laminin and type IV collagen assembled ectopic basement membrane-like structures, the cell adherens junction components N-cadherin and ß-catenin lost their polarized expression pattern, and expression of the gap junction protein connexin 43 was reduced by ~30% when compared with that of the controls. Besides these changes, expression of antimüllerian hormone (Amh) was inhibited in the absence of Wnt4 signaling in vivo. Consistent with this, Wnt4 signaling up-regulated Amh gene expression in KK1 cells in vitro. Thus, Wnt4 signaling is necessary during maturation of the ovarian follicles, where it coordinates expression of Amh, cell survival, and polarized organization of the follicular cells.


Assuntos
Hormônio Antimülleriano/genética , Membrana Basal/metabolismo , Polaridade Celular/genética , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Proteína Wnt4/genética , Animais , Animais Recém-Nascidos , Hormônio Antimülleriano/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/metabolismo , Células da Granulosa/ultraestrutura , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Oócitos/crescimento & desenvolvimento , Oócitos/ultraestrutura , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Via de Sinalização Wnt/genética , Proteína Wnt4/metabolismo
14.
Development ; 140(4): 873-85, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23362348

RESUMO

The nephron is a highly specialised segmented structure that provides essential filtration and resorption renal functions. It arises by formation of a polarised renal vesicle that differentiates into a comma-shaped body and then a regionalised S-shaped body (SSB), with the main prospective segments mapped to discrete domains. The regulatory circuits involved in initial nephron patterning are poorly understood. We report here that HNF1B, a transcription factor known to be involved in ureteric bud branching and initiation of nephrogenesis, has an additional role in segment fate acquisition. Hnf1b conditional inactivation in murine nephron progenitors results in rudimentary nephrons comprising a glomerulus connected to the collecting system by a short tubule displaying distal fates. Renal vesicles develop and polarise normally but fail to progress to correctly patterned SSBs. Major defects are evident at late SSBs, with altered morphology, reduction of a proximo-medial subdomain and increased apoptosis. This is preceded by strong downregulation of the Notch pathway components Lfng, Dll1 and Jag1 and the Irx1/2 factors, which are potential regulators of proximal and Henle's loop segment fates. Moreover, HNF1B is recruited to the regulatory sequences of most of these genes. Overexpression of a HNF1B dominant-negative construct in Xenopus embryos causes downregulation specifically of proximal and intermediate pronephric segment markers. These results show that HNF1B is required for the acquisition of a proximo-intermediate segment fate in vertebrates, thus uncovering a previously unappreciated function of a novel SSB subcompartment in global nephron segmentation and further differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 1-beta Nuclear de Hepatócito/metabolismo , Néfrons/embriologia , Organogênese/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas Histológicas , Proteínas de Homeodomínio/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Camundongos , Néfrons/metabolismo , Organogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomografia Óptica , Fatores de Transcrição/metabolismo
15.
Genesis ; 50(9): 693-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22467513

RESUMO

Lodavin represents an engineered fusion protein that consists of a cytoplasmic and a transmembrane domain of the human low-density lipoprotein receptor coupled to an extracellular avidin monomer. Biotinylated compounds have been successfully targeted to Lodavin-expressing cells that have been transduced by a Lodavin-containing virus, and the targeting is based on the high affinity between biotin and avidin. We engineered a Rosa26 (R26R) knock-in Lodavin mouse to develop biotin-based applications such as targeted drug delivery, cell purification, and tissue imaging in vivo. A cDNA encoding Lodavin was inserted downstream of a floxed ßgeo resistance gene in the R26R locus in embryonic stem cells, and a germ line-derived R26RLodavin mouse line was generated. Efficient removal of the floxed ßgeo cassette and conditional activation of Lodavin expression was achieved as a result of crossing the R26RLodavin mice with HoxB7-Cre, Wnt4-Cre, or Tie1-Cre mice. In summary, the R26RLodavin mouse line may provide a useful tool for testing and developing applications with the aid of avidin and biotin interaction.


Assuntos
Avidina/genética , Biotina/metabolismo , Sistemas de Liberação de Medicamentos , Rim/citologia , RNA não Traduzido/genética , Receptores de LDL/genética , Animais , Avidina/metabolismo , Biotinilação , Cruzamentos Genéticos , Células-Tronco Embrionárias , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Vetores Genéticos , Proteínas de Homeodomínio/genética , Humanos , Integrases , Rim/embriologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Estrutura Terciária de Proteína , RNA não Traduzido/metabolismo , Receptor de TIE-1/genética , Receptores de LDL/metabolismo , Proteínas Recombinantes de Fusão , Proteína Wnt4/genética
16.
Exp Cell Res ; 318(10): 1134-45, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22465478

RESUMO

Wnt4, a member of the Wnt superfamily of signaling molecules, is critical for mammalian kidney development, since nephrogenesis fails in its absence, while Wnt4 signaling induces mesenchyme-to-epithelium transition and associated tubulogenesis in the uninduced mesenchymal cells in the classic transfilter model. The factors that promote Wnt4 gene expression during kidney development are largely unknown, however. We addressed the upstream regulators of the Wnt4 gene and describe here the transcription factors WT1 and Sox11 as candidate molecules in the control of gene expression. We found that WT1/Sox11 regulate Wnt4 promoter expression in a synergistic fashion in an embryonic kidney mesenchyme-derived cell line model. The transcription complex containing WT1/Sox11 was immunoprecipitated from embryonic kidney cells with Sox11 antibodies, suggesting their presence in the same complex. Dominant negative forms of WT1, namely P129L and F154S mutants, inhibited Wnt4 expression, but this inhibition was not influenced by the presence of wild-type Sox11. The mutant WT1 forms were similarly incapable of interacting with Sox11, as judged by reporter studies. The spatio-temporal expression pattern of wt1 and sox11 overlaps with that of Wnt4 in the early Xenopus pronephros. Morpholino-mediated knockdown of either wt1 or sox11 inhibited Wnt4 expression in the prospective pronephros of the Xenopus embryos. We propose that Sox11 represents a synergistic factor for WT1 in regulating the Wnt4 gene expression that is critical for nephrogenesis during kidney ontogeny.


Assuntos
Regiões Promotoras Genéticas , Fatores de Transcrição SOXC/fisiologia , Proteínas WT1/fisiologia , Proteína Wnt4/genética , Animais , Sequência de Bases , Células Cultivadas , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Rim/citologia , Rim/crescimento & desenvolvimento , Luciferases/biossíntese , Luciferases/genética , Camundongos , Pronefro/embriologia , Pronefro/metabolismo , Ligação Proteica , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Via de Sinalização Wnt , Proteína Wnt4/metabolismo , Xenopus laevis/embriologia
17.
PLoS One ; 6(11): e27676, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114682

RESUMO

The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.


Assuntos
Proteína Morfogenética Óssea 4/antagonistas & inibidores , Rim/embriologia , Rim/metabolismo , Proteínas/fisiologia , Ureter/embriologia , Ureter/metabolismo , Animais , Western Blotting , Citocinas , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase S/fisiologia , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
Blood ; 118(19): 5163-73, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21937690

RESUMO

Thymus atrophy is the most common immunopathology in humans, and its occurrence is hastened by several factors that coalesce in patients receiving chemotherapy and most of all in recipients of hematopoietic cell transplantation. We have shown previously that posthematopoietic cell transplantation thymic function was improved by retroviral overexpression of Wnt4 in donor hematopoietic cells. Here, by using both conventional and conditional null mutant mice, we show that Wnt4 regulates steady-state thymic cellularity by a thymic epithelial cell (TEC)-dependent mechanism. The absence of Wnt4 suppressed fetal and postnatal thymic expansion and resulted in decreased TEC numbers, an alteration of the medullary-to-cortical TEC ratio, and a disproportionate loss of the most immature cKit(hi) thymocyte precursors. Wnt4 also is implicated in the maintenance of adult thymopoiesis, although the impact of its deletion once thymic involution has been initiated is more subtle. Together, our results show that Wnt4 controls thymic size by modulating TEC expansion and the earliest, TEC-dependent steps of thymocyte development both in the fetal and postnatal thymus. Wnt4 and its downstream signaling pathways could thus represent interesting candidates to improve thymic output in subjects with thymic atrophy.


Assuntos
Linfopoese/fisiologia , Timo/citologia , Timo/fisiologia , Proteína Wnt4/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Feminino , Células-Tronco Hematopoéticas/citologia , Humanos , Linfopoese/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Gravidez , Timo/embriologia , Proteína Wnt4/deficiência , Proteína Wnt4/genética
19.
Nephrol Dial Transplant ; 26(11): 3446-51, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926402

RESUMO

BACKGROUND: Several studies have indicated the central role of the megalin/cubilin multiligand endocytic receptor complex in protein reabsorption in the kidney proximal tubule. However, the poor viability of the existing megalin-deficient mice precludes further studies and comparison of homogeneous groups of mice. METHODS: Megalin- and/or cubilin-deficient mice were generated using a conditional Cre-loxP system, where the Cre gene is driven by the Wnt4 promoter. Kidney tissues from the mice were analysed for megalin and cubilin expression by quantitative reverse transcription-polymerase chain reaction, western blotting and immunohistochemistry. Renal albumin uptake was visualized by immunohistochemistry. Twenty-four-hour urine samples were collected in metabolic cages and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Urinary albumin/creatinine ratios were measured by ELISA and the alkaline picrate method. RESULTS: The Meg(lox/lox);Cre(+), Cubn(lox/lox);Cre(+) and Meg(lox/lox), Cubn(lox/lox);Cre(+) mice were all viable, fertile and developed normal kidneys. Megalin and/or cubilin expression, assessed by immunohistology and western blotting, was reduced by >89%. Consistent with this observation, the mice excreted megalin and cubilin ligands such as transferrin and albumin in addition to low-molecular weight proteins. We further show that megalin/cubilin double-deficient mice excrete albumin with an average of 1.45 ± 0.54 mg/day, suggesting a very low albumin concentration in the glomerular ultrafiltrate. CONCLUSIONS: We report here the efficient genetic ablation of megalin, cubilin or both, using a Cre transgene driven by the Wnt4 promoter. The viable megalin/cubilin double-deficient mice now allow for detailed large-scale group analysis, and we anticipate that the mice will be of great value as an animal model for proximal tubulopathies with disrupted endocytosis.


Assuntos
Modelos Animais de Doenças , Endocitose/fisiologia , Túbulos Renais Proximais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Receptores de Superfície Celular/fisiologia , Albuminas/metabolismo , Animais , Western Blotting , Creatinina/urina , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas Imunoenzimáticas , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína Wnt4/genética
20.
Dev Biol ; 353(1): 50-60, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21354128

RESUMO

Wnt signalling regulates several aspects of kidney development such as nephrogenesis, ureteric bud branching and organisation of the collecting duct cells. We addressed the potential involvement of Dickkopf-1 (Dkk1), a secreted Wnt pathway antagonist. Dkk1 is expressed in the developing mouse kidney by pretubular cell aggregates and the nephrons derived from them. Besides the mesenchyme cells, the epithelial ureteric bud and more mature ureteric bud derivatives in the medulla and the papilla tip express the Dkk1 gene. To reveal the potential roles of Dkk1, we generated a floxed allele and used three Cre lines to inactivate Dkk1 function in the developing kidney. Interestingly, Dkk1 deficiency induced by Pax8Cre in the kidneys led in newborn mice to an overgrown papilla that was generated by stimulated proliferation of the collecting duct and loop of Henle cells, implying a role for Dkk1 in the collecting duct and/or loop of Henle development. Since Pax8Cre-induced Dkk1 deficiency reduced marker gene expression, Scnn1b in the collecting duct and Slc12a1 in the loop of Henle, these results together with the extended papilla phenotype are likely reasons for the decreased amount of ions and urine produced by Dkk1-deficient kidneys in the adult. Recombinant Dkk1 protein in cultured cells inhibited Wnt-7b-induced canonical Wnt signalling, which is critical for collecting duct and loop of Henle development. Moreover, Dkk1 deficiency led to an increase in the expression of canonical Wnt signalling of target Lef-1 gene expression in the stromal cells of the developing papilla. Based on the results, we propose that Dkk1 controls the degree of Wnt-7b signalling in the papilla to coordinate kidney organogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Medula Renal/embriologia , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , Animais , Proliferação de Células , Integrases/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Néfrons/embriologia , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/fisiologia , Ureter/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...