Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1221849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675045

RESUMO

Ulcerative colitis (UC) is a refractory inflammatory bowel disease, and the outcomes of conventional therapies of UC, including 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are not satisfied with patients and physicians with regard to adverse reactions and financial burden. The abnormality of the intestinal mucosal barrier in the pathogenesis of UC was verified. Qingchang Suppository (QCS) is an herbal preparation and is effective in treating ulcerative proctitis. The mechanism of QCS and its active ingredients have not been concluded especially in mucosal healing. This review elucidated the potential mechanism of QCS from the intestinal mucosal barrier perspective to help exploring future QCS research directions.

2.
World J Clin Cases ; 11(15): 3578-3582, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37383901

RESUMO

BACKGROUND: Massive intragastric clotting (MIC) makes endoscopic therapy difficult in patients with acute upper gastrointestinal bleeding. Literature data on how to address this problem are limited. Here, we report on a case of massive stomach bleeding with MIC that was successfully treated endoscopically using an overtube of single-balloon enteroscopy. CASE SUMMARY: A 62-year-old gentleman with metastatic lung cancer was admitted to the intensive care unit due to tarry stools and hematemesis of 1500 mL of blood during hospitalization. Emergent esophagogastroduodenoscopy revealed massive blood clots and fresh blood in the stomach with evidence of active bleeding. Bleeding sites could not be observed even by changing the patient's position and aggressive endoscope suction. The MIC was successfully removed using an overtube connected with a suction pipe, which was inserted into the stomach with an overtube of a single-balloon enteroscope. An ultrathin gastroscope was also introduced through the nose into the stomach to guide the suction. A massive blood clot was successfully removed, and an ulcer with oozing bleeding at the inferior lesser curvature of the upper gastric body was revealed, facilitating endoscopic hemostatic therapy. CONCLUSION: This technique appears to be a previously unreported method to suction MIC out of the stomach in patients with acute upper gastrointestinal bleeding. This technique could be considered when other methods are not available or if they fail to remove massive blood clots in the stomach.

3.
Medicine (Baltimore) ; 101(26): e29729, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776995

RESUMO

The aim of the study wasto explore the target and potential mechanism of Scutellariae Radix and Astragaloside in the treatment of lung cancer infection by network pharmacology. The target information of baicalein and flavonin was mined from CTD database and Swiss database. Genecards database, DRUGBANK database, and OMIM database were used to search for lung cancer related genes. The target protein network map (PPI) was drawn by using the STRING database analysis and Cytoscape3.7.1 software. With the help of Perl language, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene function analysis (GO) enrichment analysis were carried out by using the biological program package of R language. In total, 347 biological targets of Astragaloside and Scutellariae Radix were identified through the collection and analysis of multiple databases. In total, 1526 lung cancer targets were obtained from a multi-disease database. The "component-target" network of Astragaloside and Scutellariae Radix was constructed, and the protein interaction network (PPI) of the overlapping targets was analyzed to identify the key targets of drug-influenced diseases. In addition, KEGG pathway analysis and GO enrichment analysis were performed on the overlapping targets to explore the mechanism of Scutellariae Radix and Astragaloside in the treatment of lung cancer. Scutellariae Radix and Astragaloside have the characteristics of multi-component, multi-target and multi-pathway in the treatment of lung cancer, which provides a new idea and scientific basis for further research on the molecular mechanism of the antilung cancer effect of Scutellariae Radix and Astragaloside.


Assuntos
Neoplasias Pulmonares , Saponinas , Scutellaria baicalensis , Bases de Dados Factuais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Farmacologia em Rede/métodos , Oncogenes , Saponinas/farmacologia , Saponinas/uso terapêutico
4.
J Mol Graph Model ; 110: 108056, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715468

RESUMO

Methane is not only the main cause of coal mine accidents but also a contributor to global warming, meanwhile, it is clean energy. It is necessary to find an advanced material which can capture methane efficiently for its utilization. In this paper, the adsorption of CH4 gas molecules on Nb2CTx(T = O, F, Cl, OH) is studied by first-principles calculation. The results indicate that the adsorption of CH4 on Nb2CTx(T = O, F, Cl, OH) is weak, and the adsorption of CH4 on Nb2C(OH)2 is the best. The calculation results of binding energy and cohesive energy show that Nb2CO2 has the best stability. The adsorption behavior of CH4 on Nb2CO2 under charge control is further studied. With the increase of negative charge state in the system, the adsorption of CH4 on Nb2CO2 is significantly enhanced, from physical adsorption to chemical adsorption; when the charge state of the system is greater than or equal to -2, Nb2CO2 can capture CH4 effectively, and the charges transferred from Nb2CO2 to CH4 mainly come from Nb atom. After the removal of the extra charge, the adsorption of CH4 on Nb2CO2 becomes weak and returns to physical adsorption state; CH4 gas molecules are easy to desorb. Therefore, Nb2CO2 can capture and release CH4 molecules by regulating the charge state of Nb2CO2, and Nb2CO2 is expected to become an excellent candidate material for CH4 capture/release.


Assuntos
Metano , Nióbio , Adsorção , Tomografia Computadorizada por Raios X
5.
Artigo em Inglês | MEDLINE | ID: mdl-34765000

RESUMO

OBJECTIVES: Ulcerative colitis (UC) is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide. This study was designed to uncover the healing effect of friedelin, a bioactive compound against UC through bioinformatics of network pharmacology and experimental verification of UC model mice. MATERIALS AND METHODS: Targets of friedelin and potential mechanism of friedelin on UC were predicted through target searching, PPI network establishing, and enrichment analyzing. We explored effects of friedelin on dextran sulfate sodium (DSS)-induced colitis. Severity of UC was investigated by body weight, disease activity index (DAI), and length of the colon. Inflammation severity was examined by determination of proinflammatory and anti-inflammatory cytokines. The numbers of autophagosome around the epithelial cells were observed by autophagy inhibition via a transmission electron microscope. The expressions of autophagy-related ATG5 protein and AMPK-mTOR signaling pathway were determined by immunofluorescence staining. RESULTS: In this study, 17 potential targets of friedelin and 1111 UC-related targets were identified. 10 therapeutic targets of friedelin against UC were acquired from overlapped targets of UC and friedelin. PPI network construction filtered 14 core targets through target amplification and confidence enhancement. The results of molecular docking showed that the docking scores of the top 5 active targets were higher than the threshold values. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out, showing friedelin alleviates UC through anti-inflammatory pathways and molecular function of autophagy. Subsequently, animal-based experiments revealed the intraperitoneal injection of friedelin ameliorated DSS-induced body weight loss, DAI decrease, colon length shortening and colonic pathological damage with lower myeloperoxidase and proinflammatory cytokines (IL-1ß and IL-6) and higher IL-10 levels, and more autophagosomes in transmission electron microscope results. The AMPK-mTOR signaling pathway plays important role in the friedelin's effect in autophagy as KEGG pathway result and experiment verification. Furthermore, the 3 ma validated the role of autophagy as an improvement in the friedelin's pharmacologic effect to UC model mice. CONCLUSIONS: Friedelin ameliorated DSS-induced colitis in mice through of inflammatory inhibition and regulation of autophagy.

6.
J Mol Model ; 27(12): 346, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34748110

RESUMO

Methanol is a promising source that can replace non-renewable petroleum energy. Therefore, it is of great importance to oxidize the methane into methanol because methane is not easy to transport although its huge reserves. The stability between TM (Ti, V) atoms and C24N24 is firstly studied through DFT calculations. The results show that the binding energy between TM and C24N24(Ti@C24N24 = - 9.0 eV, V@C24N24 = - 8.0 eV) is more negative than its cohesive energy (Ti = - 5.6 eV, V = - 5.6 eV), indicating TM@C24N24 possess good stability. On this basis, the oxidation process of methane to methanol is further studied on the TM@C24N24 single-atom catalysis using N2O as the oxidant. The results show that N2O is firstly adsorbed on TM@C24N24, and then directly decomposed into N2 and Oads. N2 is released and only Oads is adsorbed on C24N24 as active oxygen for the following catalytic methane oxidation to methanol process. The process includes two steps: (1) CH4 + Oads → CH3* + OH*, the reaction barriers in this process are 1.2 eV (Ti) and 1.5 eV (V); (2) CH3* + OH* → CH3OH, the reaction barriers are 1.8 eV (Ti) and 1.8 eV (V) in this step. Finally, the obtained CH3OH molecule will leave the surface of TM@C24N24 single-atom catalyst and the energy required for this step is 1.4 eV (Ti) and 1.0 eV (V), respectively. These findings provide theoretical guidance for the catalytic oxidation of CH4 to CH3OH using TM (Ti,V)@C24N24 single-atom catalysts.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34221084

RESUMO

AIM: The incidence of ulcerative colitis (UC) is increasing steadily in developed countries, it is plaguing nearly 1 million people in the United States and European countries, while developing countries have had a rapidly increased incidence over the past decades. Curcuma is widely used in treating malaria, UC, Crohn's disease, and colon cancer, which lead to diarrhea and bloody stool. However, the systemic mechanism of curcuma in treating UC is still unclear. Our work was supposed to expound how does curcuma alleviate UC in a comprehensive and systematic way by network pharmacology, molecular docking, and experiment verification. METHODS: Traditional Chinese Medicine System Pharmacology Database (TCMSP), Shanghai Chemistry & Chemical Industry Data Platform (SGST), and papers published in Chinese Network Knowledge Infrastructure (CNKI) and PubMed were used to collect the chemical constituents of curcuma based on ADME (absorption, distribution, metabolism, and excretion). And effective targets were predicted by Swiss Target Prediction to establish the curcuma-related database. The disease targets of UC were screened by GeneCards and DrugBank databases, and Wayne (Venn) analysis was carried out with curcuma targets to determine the intersection targets. AutoDock software and TCMNPAS system were used to dock the core chemical components of curcuma with key UC targets. Protein interaction (PPI) network was constructed based on the STRING database and Cytoscape software. Gene function GO analysis and KEGG pathway enrichment analysis were carried out by using Metascape database. Finally, HE staining was performed to identify the inflammatory infiltration and expression difference in TNF-α and STAT3 before and after the treatment of curcuma which was verified by immunoblotting. RESULTS: Twelve active components containing 148 target genes were selected from curcuma. Potential therapeutic targets of curcuma in the treatment of UC were acquired from 54 overlapped targets from UC and curcuma. Molecular docking was used to filter the exact 24 core proteins interacting with compounds whose docking energy is lower than -5.5 and stronger than that of 5-aminosalicylic acid (5-ASA). GO and KEGG analyses showed that these targets were highly correlated with EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, MAPK signaling pathway, and inflammatory bowel disease (IBD). Experiments verified curcuma relieved pathological manifestation and decreased the expression of TNF-α and STAT3. CONCLUSION: Curcuma relieved the colon inflammation of ulcerative colitis via inactivating TNF pathway, inflammatory bowel disease pathway, and epithelial cell signaling in Helicobacter pylori infection pathway, probably by binding to STAT3 and TNF-α.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...